
=a

/
NY LVS

SPECTRUM
MICRO
DRIVE
BOOK
with details of the ZX Interface 1;
the Microdrive, the Local Area Network
and the RS232 Link

by Dr. lan Logan

~\. —

with details of the ZX Interface 1;
the Microdrive, the Local Area Network
and the RS232 Link

by Dr. lan Logan

Mi
MELBOURNE HOUSE

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Melbourne House,
Church Yard,
Tring, Hertfordshire HP23 5LU,
ISBN 0 - 86161 - 127-6

Published in Australia by:
Melbourne House (Australia) Pty. Ltd.,
Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria, 3205,
National Library of Australia Card Number and
ISBN 0 - 86759 - 128-5

Published in the United States of America by:
Melbourne House Software Inc.,
347 Reedwood Drive,
Nashville TN 37217.

The terms Sinclair, 2X, 7X80, ZX81, ZX Spectrum, ZX Microdrive, ZX Interface, ZX Net, Microdrive,
Microdrive Cartridge, 2X Printer and ZX Power Supply are all Trade Marks of Sinclair Research Limited.

Copyright (c) 1983 Dr I. Logan

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined in the Copyright Act.
All enquiries should be addressed to the publishers

Printed in Hong Kong by Colorcraft Ltd.

DCBA9876543210

Preface:

The long awaited Microdrives have now appeared. They allow owners of
the ZX Spectrum to save and retrieve their programs and data using a
sophisticated mass storage device. But, not only have the Microdrives
arrived — there are also the Local Area Network and the RS232 Link.
Each Microdrive and ZX Interface 1 is supplied with a manual that intro-
duces the user to the new Spectrum system; but in such a ‘beginner's
manual’ there are many questions left unanswered. In this book there are
chapters on the extended Spectrum system, the extended BASIC, the
Microdrive, the Local Area Network, the RS232 link and finally the infor-
mation required by the machine code programmer.

The aim of the book is really one of trying to answer the questions that will be
posed by owners of the new equipment; and the book does not try to list
programs that can be written to use the new features.

It has only been possible for me to envisage the writing of this book because
| have had the pleasure of assisting in the writing of the ‘shadow’ ROM
software that is now to be found in the ZX Interface 1.

Many people have been involved in the Microdrive project, put the ‘lion's
share’ of the work has been done by Martin Brennan and Ben Cheese of
Sinclair Research Ltd.; and it is to them that the praise should be given.

| would like to record my thanks to Martin, Ben and the other members of the
development team for the way they all made me so welcome; and answered
so very many questions.

There is no doubt that with the introduction of the Microdrive and the Local
Area Network that personal computing has taken a further leap forward —
bringing previously very expensive features to the ‘average’ person.

It will take some time to develop programs that use the new equipment to its
greatest advantage, but Sir Clive Sinclair can be justly proud of the success
of his ZX computers.

| would also like to thank
— Alfred Milgrom of Melbourne House (Publishers) for his continuing assist-

ance and advice.
— ‘George Tokarski (photographers)’ for the photographs.
— Sinclair Research Ltd. for making available early models of the ZX

Interface 1 and Microdrives.
— St. Lawrences School, Skellingthorpe, Lincoln, for making available a

BBC microcomputer.
and, my wife Liz and daughters — Jackie and Carolyn.

lan Logan Lincoln, 1983

Contents

[tROGUCHION: cs dod sie esrebereie ead eae eR Aor ek new ours sie 1

Chapter 1
The Extended Spectrum System-.205ee eee 3

Chapter 2
The Extended BASIC2. 0... c cee ence ence eens 9

Chapter 3
The Microdrive0 00 c cece cee eee eee ees 21

Chapter 4
The Local Area Network0. 0000 e cece cence nee ees 43

Chapter 5
The S202 LIM cen cea tos ide ada eae ko nod Hed ded Rae 63

Chapter 6
Using Machine Code

a. Using the ‘Hook Codes’5--.eece eee e eens 77
b. Adding New Statements--- 0. eee eee eee 91

Introduction

The purchase of a ZX Interface 1 and a Microdrive has probably given the
average Spectrum owner a first introduction to the ‘mass storage of data’
and ‘computer-to-computer linking’. Both these subjects are initially difficult
to understand but as with many fields of ‘science’ the underlying principles

are fairly simple.

In this book each facility offered by the ZX Interface 1 and Microdrive will be
discussed in turn. Finally the reader is invited to try writing his/her own
machine code programs; as it is only with machine code that the system can
be made to function to its maximum potential.

Chapter 1

The Extended Spectrum System

The 2X Interface 1 is a ‘communications’ board. It allows the Spectrum to
be linked to Microdrives, other Spectrums via the local area network and
RS232 devices.

A Spectrum fitted with a ZX Interface 1 therefore has the facility to handle:
data coming from: the keyboard

a cassette player
a Microdrive
another Spectrum (via the network)
an RS232 device

and data going to: aTv
a cassette player
a Microdrive
another Spectrum (via the network)
an RS232 device
a ZX printer
the on-board loudspeaker

The Spectrum system is a single microprocessor system and this has the
result of making the ‘servicing’ of an input or output device a ‘dedicated’
action. That is to say the Spectrum cannot do any other work at the same
time as serving an input or output device. The only exception being that the
TV signal is produced directly by the Uncommitted Logic Array (U.L.A.) of
the Spectrum.

Diagram 1 shows the extended Spectrum system.

The ZX Interface 1 can be discussed under three headings:
i The connectors
ii The ‘paging’ operation
iii. The electronics

Each of these will now be discussed in some detail.

3

to other Spectrums
from | Local Area Network

to RS232
from | Devices

to ZX Printer

to 1-8
from |_Microdrives

to {Cassette
from| Player

Power
to T.V.

Main Spectrum Board

Loudspeaker

Diagram 1. The extended Spectrum system (not to scale).

4

i. The connectors:
There are five connectors to the printed circuit board of the ZX Interface 1.

a. The main edge connector.
This is a 54 track edge connector that joins the ZX Interface 1 to the
Spectrum itself. The main ‘lines’ carried across this connector are the:
* 16 address lines
¢ 8data lines
« the ROM chip select line
e +9v., +5v. & Ov.
e M1 (instruction fetch)

but the other control lines are no less important to the operation of the ZX
Interface 1.

b. The extension connector
The 54 tracks are to the extension connector for using the ZX Printer etc.

c. The Microdrive connector
This is a 14 track connector. The lines are:
° Ov
e +9Vv.
¢ Two bidirectional data lines
e R/W (read/write)
e Erase
« Two control lines
e Write protect
« Five unused lines — all grounded.

Data passes between the ZX Interface 1 and a Microdrive in a serial
manner — sequential bits being carried on each data line in turn. Port
E7h is the input/output port for handling data.

The two control lines are used to select the required Microdrive and
start/stop its motor. Port EFh is used when handling these lines; as well
as the Erase and Write protect lines.

d. The RS232 connector
This is a 9 pin D-socket.
The lines are:

When sending data — Pin3 Data out (RXdata)
— Pin 4 Data terminal ready (DTR)

When receiving data — Pin 2 Data in (TXdata)
— Pin 5 Clear to send (CTS)

And, always — Pin 7 Ov.

The Spectrum is viewed as a DCE (= data communication equipment)
when sending data — a byte of data is sent on RXdata when DTR is
found to be high; and vice versa, the Spectrum is viewed as a DTE
(= data terminal equipment) when receiving data — a byte of data is
received on TXdata only when the Spectrum has raised CTS to show it
is ready.

The port F7h is used by the RS232 link with the data bits being passed
serially on data line ‘0’. The state of the DTR line is found by reading bit 3
of port EFh and the CTS line is raised by setting bit 4 of the same port.

e. The Local Area Network connector
There are a pair of sockets for connecting the user's Spectrum to other
Spectrums. The sockets are identical and there is a pair as this allows a
series of Spectrums to be chained together without significantly altering
the impedance of the network.

The network uses only two lines:
¢ signal line
* nominal ground

The signal line is set by using data line ‘0’ of port F7h.

Note: The network is dominant to the RS232 link; and the RS232 is
selected over the network by having CTS raised (bit 4 of port EFh) during
both ‘sending’ and ‘receiving’.

ii. The ‘Paging’ operation:
The standard Spectrum has a 16K ROM (read only memory) that
occupies the memory area from address ‘0’ (0000h) to address 16383
(3FFFh). In this ROM are to be found the operating system of the
Spectrum, the BASIC interpreter, the floating-point calculator and the
character set. There is very little in this ROM that applies to the Micro-
drive, Local Area Network or RS232 link.

The ROM program of the standard Spectrum has therefore had to be
extended to cater for the new devices and this is managed by having a
‘shadow’ ROM (8K in size) in the ZX Interface 1. This second ROM is
‘paged’ with the original ROM so that at any given moment the Spectrum
is using one ROM or the other; but never both together.

In the ‘shadow’ ROM of the ZX Interface 1 are:
« Anextension to the syntax checker to allow for ‘new’ statements.
* Command routines for the ‘new’ commands
e Input and output routines for the Microdrive, Local Area Network and
RS232 link.

The key to understanding how the ‘shadow’ system actually works, is to
appreciate there are operations, which previously led to ‘error reports’,
that are now treated as correct; and the appropriate actions taken.

E.g. The statement — CAT 1 — previously gave an error report; but with
a 2X Interface 1 and a Microdrive holding a cartridge joined to the
Spectrum the statement is executed appropriately.

The ‘shadow’ ROM of the ZX Interface 1 is selected by performing an

instruction-fetch on either location 0008h or location 1708h; and the main
ROM is re-selected by an instruction fetch on location 0700h.

There are two routines in the ‘shadow’ ROM that are worth considering in
further detail at this stage.

a. The INSER_ routine
There are ‘58’ extra system variables created when the ‘shadow’ ROM is
paged for the first time after power is connected to the Spectrum or a
NEW command is executed.

This insertion of ‘shadow’ system variables is handled by the INSER__
routine; as is the initialisation of many of them.

E.g. NTSTAT to ‘1’ — default station ‘1°

IOBORD to ‘0’ — default I/O colour ‘black’

BAUD to ‘12’ — default baud rate = ‘9600’

b. The CALBAS routine
The CALBAS — call base — routine allows for subroutines in the ‘base’
(main) ROM of the Spectrum to be called from the ‘shadow’ ROM. This
routine is especially useful as all registers are preserved whilst the
‘shadow’ ROM is unpaged and paged once again.

The CALBAS routine itself calls the ‘ROM paging subroutine’ (locations
23737-23746) in the ‘shadow’ system variables to actually effect the call
to the subroutine in the ‘base’ ROM.

The ‘ROM paging subroutine’ is:

Org 23737
H_L Equ 23738

SBRT ithe correct value for HL.
;the actual subroutine
;save new value of HL.

RET steady to ‘page’ again.

ih

The locations of H_L are used to ‘bring-in’ and ‘take-out’ the value of the
HL register pair that would otherwise be corrupted when ‘unpaging’ and
‘paging’.

Hook codes:
The routines of the ‘shadow’ ROM can be used by the machine code
programmer through a series of ‘hook codes’. These codes are used
after a RST 0008H instruction and will be discussed more fully in the
machine code chapter of this book.

iii, The electronics:
The following discussion is not intended to describe the electronic
circuitry of the ZX Interface 1; but more to describe the functions
involved. There are five main functions:

a. The ‘paging’ mechanism
The ‘shadow’ ROM has to be selected and de-selected as required. This
entails the decoding of the appropriate addresses and the M1 signal. The
result is that the signal on the ROM select line (ROMCS) is brought high
on ‘paging’ and low on ‘unpaging’.

b. Handling the port addresses
The devices attached to the ZX Interface 1 are selected by using
address lines A3 & A4 during input/output instructions. The necessary
electronics are therefore required to interpret the signals involved.

c. Handle the data to/from the Microdrive
The bytes of data that are being passed from the Spectrum to a Micro-
drive have to pass through a ‘parallel-to-serial convertor’. Indeed the bits
of a byte also have to be split between the two data lines. The opposite
actions are required when receiving data from a Microdrive.

d. Handle the data to/from the Local Area Network
The sending of the data over the network is very straightforward but the
receiving of data requires that ‘hardware’ be used to identify the ‘falling
signal’ on the serial data line. This is discussed in further detail in the
chapter dealing with the network.

e. Handle the data to/from the RS232 link.
Here it is only necessary to ensure that the correct voltages can be
handled.

Most of the electronic circuitry that performs the above operations are
contained in a single Uncommitted Logic Array (ULA).

Chapter 2

The Extended BASIC

The fitting of the ZX Interface 1 to the Spectrum has the effect of
extending the BASIC syntax checker and interpreter. To the user it
therefore appears that the ZX Interface 1 offers a means by which
BASIC statements that were previously not allowed, can now be used.

The extension of the BASIC only applies to statements with the following
commands:

FORMAT
OPEN #
CAT
ERASE
MOVE
SAVE, LOAD, VERIFY & MERGE
CLS & CLEAR

The syntax of the BASIC statements with these commands, together
with their actions, will now be described in some detail.

FORMAT:
The syntax for a FORMAT statement is:

FORMAT
a device expression (M,m,N,n,T,t,B or b)
a separator (, or;)
anumeric expression

and if required

aseparator (, or;)
& anaming expression

There are three devices handled by the ZX Interface 1 — the Micro-
drive, the network & the RS232 link — and for each device a FORMAT
statement has a specific function.

FORMAT & the Microdrive:
A FORMAT statement containing a ‘device expression’ that is a “M” ora
“m” allows the user to FORMAT a Microdrive cartridge. This formatting
action has the effect of giving the user a totally clean cartridge (i.e. all
previous information in the cartridge is lost) that is known by the ‘naming
expression’.

Examples of sensible FORMAT statements are:

FORMAT “M”:1;"First”
— the cartridge in Microdrive ‘1’ will be cleaned and given
the name “First”.
FORMAT A$;B,C$
— where A$ is currently “M” or “m”; B is a number in the

range 1-8; and C$ is a string with currently 1-10 characters.

The appropriate error message is given if an expression is ‘out of range’,
or there is no ‘unprotected’ cartridge in the specified Microdrive when
the statement is executed.

FORMAT & the network:
A FORMAT statement containing a ‘device expression’ that is a““N" ora
“n” allows the user to give the Spectrum a ‘Station number’. When the
power is first connected to a Spectrum the ‘Station number’ will always
be ‘1’, and the FORMAT statement allows the user to change this
number as required.

Examples of sensible FORMAT statements are:

FORMAT “N”:2
— the ‘Station number is to be ‘2’.
FORMAT A$;B
— where A$ is currently “N” or “in”; and B is anumber in the
range 1-64.

The appropriate error message is given if an expression is ‘out of range’;
but no error is reported if the user includes in the statement an extra
separator and a naming expression — these are simply ignored.

FORMAT & the RS232 link
A FORMAT statement containing a ‘device expression’ that is a "T”, “t”,
“B” or “b” allows the user to specify the baud rate for both input and
output operations. By default the baud rate will be ‘9600' and the
FORMAT statement allows the user to change the rate between ‘50’ and
19200’. The values allowed are:

50, 110, 300, 600, 1200, 2400, 4800, 9600 & 19200.

10

Examples of sensible FORMAT statements are:

FORMAT “T”;1200
— the baud rate will become ‘1200’.
FORMAT A$,B
— where A$ is currently “T’
current value.

‘B" or “b”; and B has a

The appropriate error message will be given if there is an invalid ‘device
expression’ or the baud rate is set to greater than ‘65535’.

Although the actual settings of the Spectrum’s baud rate are ‘discrete’ (9
settings only) no error message is given if ‘other’ values are used;
instead the baud rate ‘below’ the value is used (with a lower limit of '50’).

e.g. FORMAT “t”,25000 sets the baud rate to ‘19200’,
& FORMAT “t’,.5 sets the baud rate to ‘50’.

Note that there is no distinction between the actions performed with a
statement containing the ‘device expression’ “B” or one containing “T”.

OPEN #:
The syntax for a OPEN # statement is:

OPEN #
a stream number (normally 4-15)
a separator (, or ;)
a device expression (M,m,N,n,T,t,B,b)

and if required

a separator (, or;)
a numeric expression

and if required

aseparator (, or ;)
anaming expression

In the Spectrum an OPEN # statement has the function of associating
a specified device with a specified stream; and allows the user to handle
the specified device with statements containing the commands:

PRINT #n, INPUT #n, & INKEY$#n
where n is the number of the stream associated with the
device.

W

In its default state the Spectrum associates the ‘keyboard’ with streams
‘0’ and ‘1’, the TV screen with stream ‘2’ and the ZX printer with stream
‘3’. Although it is indeed possible to change the ‘associations’ of these
streams there would appear to be little purpose in so doing.

The actual operation of OPENing a stream involves two independent
steps. First the necessary ‘channel data’ for the appropriate device is
placed in the ‘channel information area’. Secondly, the ‘offset address’ —
difference between the base address of the channel data and the system
variable CHANS — is placed in the ‘streams data area’.

The OPENing of streams associated with the Microdrive, network and
RS232 link will now be discussed in turn.

OPEN # & the Microdrive:
An OPEN # statement containing a ‘device expression’ that is a“M” ora
“m” allows the user to associate a specific stream witha specific named
file on a specific Microdrive.

Examples of sensible OPEN # statements are:

OPEN #4;"M",1;“FIRST FILE”
— the file named FIRST FILE on Microdrive ‘1’ is to be
associated with stream ‘4’.
OPEN #A;B$,C,D$(2)
— where A has a value in the range 0-15; BS is the ex-
pression “M”, or “m’; C has a value in the range 1-8; and
D$(2) is a string expression with 1-10 characters.

Upon execution of an OPEN # statement of this type the file specified will
be available for ‘writing to’ if itis a ‘new’ file and for ‘reading from’ if the file
already exists. Hence it is not possible in the Spectrum’s Microdrive
system to add to an existing file from BASIC.

An error message will be given if the stream is already open (does not
apply to streams 0-3), an expression is ‘out of range’ or there is in-
sufficient memory to allow for the channel information area to be en-
larged by 595 bytes.

Note that the use of an OPEN # statement to associate a stream with a
particular file does not in itself create that file. It is only by writing more
than 512 characters to the file, or CLOSEing a stream that has been
used, that creates a file.

12

OPEN # & the network:
An OPEN # statement containing a ‘device expression’ that is a ““N” ora
“n” allows the user to associate a specific stream with the ‘sending’ or
‘receiving’ of data over the network to/from a Spectrum with a specific
station number.

Examples of sensible OPEN statements are:

OPEN #4; “N”,44
— associate stream ‘4’ with a Spectrum using the station
number ‘44’.
OPEN #A,B$,C
— where A has a value in the range 0-15; B$ is the string
expression “N” or “n”; and C has a value in the range 0-64.

Once again error messages will be given upon execution of an OPEN #
statement of this type if the stream is already open (does not apply to
streams 0-3), an expression is ‘out of range’ or there is insufficient
memory to allow for the channel information area to be enlarged by 276
bytes. The association of a given stream with the network does not in
itself determine whether the stream is to be used for the sending or the
receiving of data; but once a ‘network buffer’ contains data the opposite
action is not permissible. |.e. ‘received’ data can only be ‘read’ & ‘data for
sending’ can only be ‘sent’.

OPEN # & the RS232 link:
An OPEN # statement containing a ‘device expression’ thatis a“T”, “t’,
“B” or “b” allows the user to associate a specific stream with the RS232
link for either input or output. The baud rate is unaffected by an OPEN #
statement of this type. Examples of sensible OPEN # statements are:

OPEN #4; ‘T”
— stream ‘4’ is associated with RS232 channel data; input
& output will be handled as ‘text’.
OPEN #A,BS
— where A has a value 0-15 and B$ is the expression “B” or
“b”. Data will be handled in ‘binary’ mode.

An error message will be given if an expression is ‘out of range’. It is
unlikely that the report ‘Out of memory’ will ever be given by using an
iil # statement of this type as the RS232 channel data only uses 11
ytes.

13

CAT:
The syntax for a CAT statement is:

CAT

optionally required

ahash sign
a stream number
a separator (, or ;)

but always

a Microdrive number

A CAT statement simply lists the names of the first 50 unprotected files
found in the cartridge in the specified Microdrive. The amount of ‘free’
room in the cartridge is also given. (Names that start with CHR$ 0 are
‘protected’ and ignored by a CAT statement.)

If no stream number is given in the CAT statement then the list will by
default be printed to stream ‘2’; normally the TV screen.

Examples of sensible CAT statements are:

CAT 1
— the list of unprotected files from the cartridge in Micro-
drive ‘1’ is printed to the device associated with stream ‘2’.
— CAT #A;B
— where A has a value in the range 0-15 and B a value in
the range 1-8.

An error message will be given if an expression is ‘out of range’, the
stream to be used is closed or there is no cartridge in the specified
Microdrive.

Note that a statement containing only the word CAT does pass syntax
but will give a run-time error. This occurs as the statement is accepted as
correct syntax by the ‘original’ Spectrum ROM program and thereby
cannot be ‘trapped’ by the ZX Interface 1 until run-time. The use of CAT
and ENTER is therefore an easy way to ensure that ‘insertion’ of the
‘shadow’ system variables has been effected.

ERASE:
The syntax for an ERASE statement is:

ERASE
a device expression (M or m)
a Microdrive number
a naming expression

14

An ERASE statement ‘erases’ the data blocks in a specified Microdrive
that currently hold the data belonging to a named file. The data blocks are
then ‘free’ and are ready for further use by another file.

Examples of sensible ERASE statements are:

ERASE “M”;1;“FIRST_FILE”
— the file called FIRST_FILE will be erased from the
cartridge in Microdrive'1’.
ERASE A$;B,C$
— where A$ is the string expression “M’” or “m”; B has a
value in the range 1-8; and C$ currently holds the name of a
file.

Anerror report will be given if an expression is ‘out of range’, or there is no
cartridge in the specified Microdrive. There is no error if no data blocks
for the specified file are to be found.

MOVE:
The syntax fora MOVE statement is:

MOVE
a hash sign
a stream number
the keyword TO
a hash sign
a stream number

As an alternative to a source or destination being described using a
stream it is possible to use a set of channel specifiers, viz.

a device expression

and if required

a separator
a numeric expression

and if required

a separator
anaming expression

A MOVE statement allows the user to receive data from the ‘source’
stream/channel and send the data to a ‘destination’ stream/channel.

The time taken by a MOVE statement has had a ‘stream’ as asource ora
destination, or both, will be no longer than a statement using two sets of
channel specifiers.

15

Examples of sensible MOVE statements are:

MOVE #4 TO #5
— where bytes of data ‘received’ by stream ‘4’ are ‘sent’ to
stream ‘5’.
MOVE “N”;20 TO “M";1;“NET_DATA”
— where bytes of data ‘received’ over the network from
Station 20 are ‘sent’ to the file NET_DATA.

An error message will be given it an expression is ‘out of range’; a stream
is closed; there is no cartridge in the specified Microdrive; the ‘source’
file cannot be found; or the ‘destination’ file already exists.

The MOVE command is intended to be used to handle data files that
have a finite size, i.e. finishing with an ‘end of file’ declaration. The
handling of infinite files can lead to problems; as can the handling of
BASIC programs or arrays.

SAVE, LOAD, VERIFY & MERGE:
These four commands are used to handle BASIC programs or arrays.

The syntax for a SAVE, LOAD, VERIFY or MERGE statement is:

SAVE/LOAD/VERIFY/MERGE
astar
a device expression (M, m, N, n, T, t, B, b)

and if required

a separator
anumeric expression

and if required

a separator
anaming expression

and if required one of the following extensions

“ee (by default a BASIC program)

or

LINE
a numeric expression (SAVEing an ‘auto-run’ program)

or

DATA
an array variable (handling BASIC arrays)

or

CODE (handling a block of data)

16

and if required

anumeric expression (the start address)

and if required

a separator (,)
a numeric expression (the length of the block)

or

SCREEN$ (handling the display file)
(and attributes file)

The ‘star’ after the keyword acts as a ‘breaker’ for the syntax checker of
the ‘main’ ROM and prevents the cassette handling routine being

entered in error.

SAVE, LOAD, VERIFY & MERGE statements are used in the same

manner in an extended Spectrum as in an unexpanded Spectrum, with

the exception that programs and arrays passed by Microdrive, network

and RS232 channels do not have names.

Examples of sensible SAVE statements are:

SAVE *“m’,1,“FIRSTPROG”
— the current BASIC program in the Spectrum is SAVEd
as file FIRST.PROG on the cartridge in Microdrive ‘1’.
SAVE *“n’;2
— the current BASIC program is passed over the network to
be received by Station ‘2’.
SAVE *“b” SCREENS
— the current display file (& attributes file) is sent out on the
RS232 link. (SAVEing with the device expression “t” is
illogical and leads to a run-time error.)

Examples of sensible LOAD statements are:

LOAD *“m’”;4,“FOUR PROG”
— the file FOUR_PROG will be LOADed — as long as it

exists and is indeed a BASIC program.
LOAD *“n";33
— aprogram from Station ‘33' is LOADed.
LOAD *“b”
— aBASIC program is LOADed from the RS232 link.

Note that it is just possible for ‘data’, being received via the network or

RS232 link to be ‘recognised’ initially as a BASIC program. In such a

case the Spectrum is liable to ‘crash’; rather than give the report ‘Wrong

file type’.

17

Examples of sensible VERIFY statements are:

VERIFY *“M”,4;“FOUR_PROG”
— compare the file FOUR_PROG against the current
program in the Spectrum
VERIFY *“N”;33
— compare the ‘second’ copy of a BASIC program against
the ‘first’; allows nicely for ‘echoing’ over the network.
VERIFY *“B” CODE 32000,256
— check the bytes presently in the memory against the
data being received via the RS232 link.

Examples of sensible MERGE statements are:

MERGE *"m”;1;“PART_TWO”

— the BASIC program PART_TWO is MERGEd with the
current program.
MERGE *"n";33
— the program being received from Station ‘33’ is
MERGEd with the current program.
MERGE *“b”
— the program being received via the RS232 link is
MERGEd with the current program.

Remember that only BASIC programs and their variables can be
MERGEd; otherwise the report — ‘MERGE error’ — will be given. Also
note that ‘auto-run’ BASIC programs will not MERGE unless being
loaded from a cassette.

CLS & CLEAR:
As a ‘bonus’ to the user of the ZX Interface 1 the BASIC has been
extended to include the two statements:

CLS #
CLEAR #

CLS #:
The statement CLS # performs the actions associated with the ‘original’
CLS — in that the display file and the attributes area are ‘cleared’ — but
in addition ‘resets’:

INK to BLACK
PAPER to WHITE
BORDER to WHITE
INVERSE to ‘no’
BRIGHT to ‘no’
OVER to ‘no’
FLASH to ‘no’

18

The statement CLS # thereby ‘clears the screen fully’.

CLEAR #:
The statement CLEAR # ‘clears the stream data area’. All streams are
CLOSEd — streams ‘0’-'3’ are given their ‘normal’ values and streams
‘4’-15’ have their stream data bytes made zero. If there is any ‘unsent
data found in a channel area buffer then it is discarded (in contrast to
CLOSE #) as the channel area is reduced to its minimum configuration.

The user may also define new BASIC statements — along the lines of
CLS # & CLEAR # — inan extended Spectrum. Details of how this can
be done will be found in the machine code part of this book.

A note on stream selection:
In the Spectrum an output stream will stay ‘selected’ from one BASIC
statement to another. This action is of no detriment in the standard
Spectrum but in the extended Spectrum it can account for the non-
execution of certain statements.

E.g. Try: CLS #: PAPER 2: CLS
— and the main screen does go red.

but: CLS #: SAVE *n’;0: PAPER 2: CLS
— and it does not.

The remedy is to select the main screen before using PAPER, CLS, INK
etc.

E.g. CLS #: SAVE *“n";0: PRINT ;: PAPER 2: CLS
— and this re-selects the main screen. The statement
PRINT ; is a ‘dummy’statement.

19

20

Chapter 3

The Microdrive

AUTHOR’S NOTE:
Sinclair Research Ltd. has requested that details that might compromise
the ‘security’ of the Microdrive are not to be published; hence in this
chapter there are certain points which are not discussed as fully as they
might have been. There remains, however, much that the reader should

find of great interest.

Introduction:
The Microdrive system is essentially a mini-cassette system; and can
be considered in four separate parts.

The Microdrive Units
The actual Microdrives are best described as specially manufactured
mini-cassette players. Up to eight such units can be linked together at
any one time and controlled from a Spectrum fitted with a ZX Interface
1. Each Microdrive unit has a slot to receive a cartridge, a drive motor,
two sets of REAQD/WRITE/ERASE heads and the necessary
electronics to allow the unit to function.

The Microdrive Cartridges
A cartridge contains a single piece of recording tape of length 200 inches
(= 5m.) and width 1/16th. of an inch (= 1.5mm.). There is a single ‘splice’
and the tape thereby appears continuous. The tape is driven by a ‘pinch
wheel’ mechanism and feeds from the ‘centre’, goes past the recording
heads before being taken up on the ‘outside’ of its single spool.

The Microdrive connectors
The first drive unit is connected to the ZX Interface 1 by a 16 track ribbon
cable. Two or more drive units are joined to each other by 16 track
connectors.

The ZX Interface 1
This unit contains:

21

a. The software necessary to extend the BASIC so as to allow the
Microdrive system to be controlled.

b. The hardware necessary to handle the control signals and to
serialize/deserialize the data that passes between a Spectrum and a
Microdrive unit.

Using the Microdrive system:
A Microdrive cartridge is capable of holding, on average, 90K of data.
This data can be made up of ‘program files’ or ‘data files’. A single
cartridge may hold from one to about one hundred and eighty files at any
one time and it is perfectly permissible to have both program and data
files on a tape at the same time. Each file must have a unique name of
between one and ten characters. All charactes are allowed including
tokens. To the user it appears that a cartridge holds ‘named files’ of
varying sizes, but in reality a tape is ‘sectored’ with each sector holding a
block of data of up to 512 bytes.

Note: A cartridge holds a tape of length 200 inches. There are almost
200 sectors on each tape. Therefore a sector is about 1 inch of tape, i.e.
there is a data-density of about 500 bytes/inch. (See later in the chapter
for more details.).

A ‘named file’ will use just a single sector if the length of the file is less
than 512 bytes; and more than one sector if longer. Note that a sector can
only be associated with one ‘named file’ at a time whether the sector is
fully used or not. The sectors that hold parts of a ‘named file’ form the
‘records’ for that file. These records are numbered 0, 1....,n.

The facilities offered to the user by the Microdrive system will now be
discussed in turn.

FORMATIing a cartridge:
Anew cartridge must be prepared for use by executing the statement:

FORMAT “m”;1;"...name...”
— with the cartridge in drive ‘1’.

This statement has three effects:

1. The tape is fully erased.
2. The tape is ‘sectored’ (and verified).
3. The cartridge’s name is written to each sector that is

created.

22

CATaloguing a cartridge:
At any time the user may ask for a catalogue of the files in a particular
cartridge by using the statement:

CAT 1
— with the cartridge in drive ‘1’. The catalogue appears on
the TV screen

Also:

CAT #431
— Catalogue to be PRINTed to stream ‘4’.

The catalogue is given as:

The cartridge’s name.
A list of the first fifty names of the files found on the cartridge.
(Arranged in character-code order.)
The remaining free space on the cartridge — given in K.

Note that filenames are given without any indication as to the nature of
the file. Also, filenames which begin with ‘CHR$ 0’ are not displayed.

ERASEing a file:
Any file may be erased by using the statement:

ERASE “m”;1"“...name...”
— with the cartridge in drive ‘1’.

This operation will be very slow (about 40 seconds) if there is no ‘end of
file’ record to be found.

Handling BASIC programs, named arrays or
blocks of data:

SAVEing ‘program files’:
‘Program files’ are created by the use of the SAVE command.

E.g.

SAVE *“m”,1,““PROG.ONE”
— A ‘program file’ named ‘PROG_ONE’ is created on the

cartridge in drive ‘1’.
SAVE *“m”;2;“SC_ONE” SCREENS
— A ‘program file’ named ‘SC_ONE’ is created on the cart-
ridge in drive ‘2’.

23

SAVE *“m";3;“ARRAY_1” DATA A()
— A ‘program file’ named ‘ARRAY_1’ is created on the
cartridge in drive ‘3’.

From these examples it can be seen that ‘program files’ do not
necessarily only hold BASIC programs and their variables; but may hold
named arrays or blocks of code (viz. the cassette system of the
Spectrum).

If a BASIC program is to be executed directly on LOADing then it has to
be SAVEd with a line number.

E.g.

SAVE *"m’;1;“PROG TWO” LINE 10
— When subsequently LOADed the program will be exe-
cuted directly from line 10.

Note that in all cases when SAVE is used the ‘new’ file must be given a
name that does not already exist on the cartridge.

VERIFYing ‘program files’:
As with the cassette system of the Spectrum the user may VERIFY a
program once it has been SAVEd.

-g-

VERIFY *“m’;1;“PROG_ONE”

— the present program and its variables are compared to
the contents of the file ‘PROG_ONE’.

LOADing and MERGEing ‘program files’:
‘Program files’ can be fetched by using the LOAD and MERGE com-
mands. E.g.

LOAD *“m”;1;“PROG ONE”
— The file ‘PROG ONE’ is taken from the cartridge in drive
‘1’ and becomes the current program.
LOAD *“m”;2;“SC ONE” SCREENS
— The file ‘SC_ONE’, which must be a ‘block of code’ is
LOADed into the appropriate memory locations.
MERGE *“m’;3;“PROG THREE”
— The file ‘PROG_THREE’ is MERGEd with the current
program.

24

Note that a BASIC program SAVEd with a LINE number will be executed
directly after LOADing; and such a program cannot be MERGEd. Also
note that pressing the BREAK key whilst LOADing causes a total system
restart.

Handling ‘data files’:
In contrast to the cassette system of the Spectrum which only allows for
the use of ‘program files’, the Microdrive system can handle ‘data files’.

‘Data files’ are always serial access files; although the user can produce
the illusion of random access filing, if wished, by reading a file
completely, amending it as required and storing the file again.

Producing a ‘data file’:
The production of a ‘data file’ involves the use of OPEN, PRINT and
CLOSE statements.

The OPEN statement has to be used first and has the form:

10 OPEN #4;"m’;1;“...name...”
— the data-items will be ‘sent’ along stream ‘4’ to the Micro-
drive file.

The actual command routine of the OPEN command creates a Micro-
drive channel’ in the channel information area. This channel is then
associated with stream ‘4’. The most important part of the channel is the
data buffer which occupies 512 locations and can therefore hold 512
bytes of data before becoming full.

The data buffer is filled by using PRINT statements. E.g.

20 FOR A=1 TO 300
30 PRINT #4;A
40 NEXTA

Then, once the data-items have been declared the stream should be
CLOSEd. E.g.

50 CLOSE #4

The actual file on the Microdrive cartidge is created when the data butfer
in the channel information area is emptied for the first time. This may
occur either when the data buffer is filled for the first time or, with a
partially filled data buffer; when the CLOSE statement is executed. As
occurs when using ‘program files’ a file will only be created if a ‘new’
filename is being used.

25

The bytes of data ‘sent’ from the data buffer to the Microdrive file will be
placed in a fresh sector of the cartridge, thereby forming a new record for
that file. The ‘record descriptor’, i.e. the header of the record, holds the

filename and the ‘number of the buffer’ being sent. The data ‘sent’ when
the CLOSE statement is executed forms the final record of a file and is
marked ‘end-of-file’. The CLOSE statement also leads to the Microdrive
channel bytes being reclaimed.

Reading a ‘data file’:
The reading of a ‘data file’ involves the use of OPEN, INPUT and/or
INKEYS, and CLOSE statements.

As with producing a ‘data file’ the OPEN statement has to be used first.
E.g.

10 OPEN #4;"m’;1;...name...”

This type of statement once again creates a ‘Microdrive channel’ assoc-
iated with a specified stream.

The subsequent use of an INPUT or an INKEY$ statement for the first
time leads to the first record of the named file being copied into the data
buffer. Further records are collected as required until the record marked
‘end-of-file’ is found.

A statement such as:

20 INPUT #4;A

takes bytes in order from the data buffer until a carriage-return character
is found. The bytes are then assigned to the variable. Note the similarity
to the manner in which the user responds to an ordinary INPUT state-
ment by pressing keys on the keyboard, finishing with ENTER.

Strings of characters can be assigned to string variables as with:

30 INPUT #4;A$

As with a numeric variable all characters before the carriage-return
character are assigned to the variable.

The use of the INKEY$ function is just a little different in that a single
character is returned to the user on every occasion INKEY$ is used.

E.g. 40 PRINT INKEY$#4;
— Will lead to the printing of a single character read
from the file.

26

The use of a CLOSE statement leads to the channel bytes being

reclaimed thereby losing any data that might have been ‘unread’.

Note that the report ‘End of file’ will be given if the user should attempt to

‘read’ non existent bytes from a file.

The following annotated program illustrates the points made above

about producing and reading a ‘data file’.

Producing a file:
10 OPEN #12:“m’:1;“Alphabet” — create a Microdrive channel.

20 FOR A=65 TO 90
30 PRINT #12;A — enter 26 numbers into the data buffer.

40 NEXTA
50 CLOSE #12 —‘send’ the data-items and reclaim the Mierodrive

channel bytes.

Reading a file:
60 OPEN #14;"M”:1;"Alphabet” — create a Microdrive channel.
70 FOR B=1 TO 1000— Read the file until its end.
80 INPUT #14;C
90 PRINT CHR$ C; — print each ASCII character.

100 NEXTB

And; after the report ‘end of file’

CLEAR# or CLOSE #14

to close down the open stream.

In the above program the ‘data file’ — Alphabet — contains a set of
printed-numbers;

ie. The number ‘ten’ occupies three bytes, a ‘1’, a ‘0’ anda
‘carriage return’.

But, a ‘data file’ to hold the alphabet might equally well have twenty six
single character string items, or a single string of all the characters.

MOVEing ‘data files’:

In the Microdrive system it is not possible to MOVE ‘program files’; i.e.
files created by using SAVE.

However, any ‘data file’ can be MOVEd and this can be most useful as it
provides a method by which ‘data files’ can be copied with ease.

27

E.g. Tomake a copy of the file— Alphabet, with the new file
to be named — Letters:
MOVE “m”:1;“Alphabet” TO “m";1;“Letters”

Also, the MOVE command can be used to pass the bytes of a ‘data file’
between Microdrive and another device. There are many possible
examples that can be discussed but perhaps the most useful are the
following simple statements:

MOVE “m’;1;“Alphabet” TO #2
& MOVE “m”:1;“Alphabet” TO #3

which allows the user to obtain a print-out, on the screen or the ZX
printer, of the items held in a ‘data file’.

The technical details

of the Spectrum Microdrive system:

The Microdrive system will now be discussed under three headings:

— the tape format
— the Microdrive channel
— the BASIC command routines

There will not, however, be any discussion on the electronics of the

system; and machine code details will be left until later in the book.

The tape format:

All data is stored on a Microdrive tape using two tracks — with data bits
being stored alternatively on each track. This 2-track system means that
a data bit can ‘occupy’ a longer length of tape than if a single track were
used — for a given speed. Of course a Microdrive unit now has to
have a double set of recording heads and data has to be handled in two
streams; but the gain in operating speed is impressive.

Diagram 1 shows how data bits can be visualised as existing on a
Microdrive tape.

It will be sensible from now on to ignore the fact that 2 tracks are actually
used and consider that bytes of data are stored discretely on a tape ina
serial manner. This is shown in diagram 2.

28

abit (0/1) abit (0/1)

ha
a bit (0/1) abit (0/1)

~<_q—_—_—e i — Tape Direction

Diagram 1. The storage of data-bits on a Microdrive tape.

\\\
1st byte 2nd byte 3rd byte
(0-255) (0-255) (0-255)

~<<_q—__—_ Tape direction

Diagram 2. The storage of data-bytes on a Microdrive tape.
ae The longitudinal scale has been compressed about 10 fold; as compared to diagram

29

A block of data bytes starts with a ‘preamble’ of twelve bytes. This
‘preamble’ has ten bytes of ‘0’ and two bytes of ‘255’ and enables the
hardware of the system to identify the start of a block of data bytes with
great accuracy.

The operation of FORMATting a cartridge divides the tape into sectors
each of which has the following parts:

— Aheader block

with: a) Twelve bytes of preamble
b)A sector header — fifteen bytes as follows:

« Aflag byte
Asector number byte

e Two unused bytes
e Ten bytes for the current cartridge name
e Achecksum byte

— Afirst gap

— A data block

with: a) Twelve bytes of preamble
b) Arecord descriptor — fifteen bytes as follows:

« Aflag byte
Arecord number byte
Two bytes for the ‘record length’.
Ten bytes for the current filename

e Achecksum byte
c) Arecord

e ‘512’ byte data area
e Achecksum byte

— Asecond gap

An approximate guide to the relative sizes of the parts is given by the
following timings:
— header block — 1.25 ms
— first gap — 3.75 ms
— data block — 25 ms
— second gap —7 ms

Diagram 3 shows the sectoring of a Microdrive tape. The diagram
illustrates, also, how roughly two-thirds of the tape can be used to hold
data in the normal operating manner.

Diagram 4 shows how the sectors of a Microdrive tape might be used by
a set of files.

30

1st. Sector 2nd Sector

header record
block

first second
gap gap

<“_]—_—_— Tape Direction

Diagram 3. ‘Sectors’ on a Microdrive tape (‘preambles’ are not shown).

Individual sectors

~<<_qj———— Tape direction

Diagram 4. ‘Files’ on a Microdrive tape.

31

The Microdrive channel:
All communication of data between a Spectrum and a Microdrive unit is
handled through a Microdrive channel. The most important part of the
channel being the five hundred and twelve byte data buffer.

The user can request the creation of a channel by using an OPEN
statement, in which case a specific stream is associated with the
channel. However, on many occasions a Microdrive channel is created
in an ‘ad hoc’ manner; for example when SAVEing a program a channel
is created and used to transfer the necessary bytes of data from the
Spectrum to the Microdrive cariridae.

A Microdrive channel has the following format:
bytes contents
0-1 Address 0008h.
2-3 Address 0008h.
4 “M” (“M” + 80h if ‘ad hoc’)
5-6 Address MWRCH (output subroutine address)
7-8 Address MRDCH (input subroutine address)
9-10 Number ‘595’ (length of Microdrive channel)
11-12 CHBYTE (counter for data area)
13 CHREC (buffer number — starts at zero)
14-23 CHNAME (characters of filename}
24 CHFLAG (read/write flag)

(25 CHDRIV number of Microdrive unit)
26-27 CHMAP (address of current map)
;the following ‘27’ locations form the Header block work space
28-39 Header block preamble
40 HDFLAG (flag byte)
41 HDNUMB (sector number)
42-43 Unused
44-53 HDNAME (cartridge name)
54 HDCHK (checksum for previous fourteen bytes)
jthe following ‘540’ locations form the Data block work space.
55-66 Data block preamble
67 RECFLG (flag byte)
68 RECNUM (buffer number)
69-70 RECLEN (current buffer length)
71-80 RECNAM (characters of filename)
81 DESCHK (checksum for previous fourteen bytes)
82-593‘ The data area of 512 locations.
594 DCHK (checksum of data area).
The manner in which the above listed locations of the Microdrive
channel are used will now be discussed by considering the command
routines of the various BASIC commands that use the Microdrive
system. The reader will also find it useful to refer to diagram 5 — the
‘writing’ and ‘reading’ of records.

32

variables

header work space

data work space

Microdrive

-—_—— record descriptor channel

‘WRITING’

on
formatting whenever a Cartridge
only record is written Sector

Data block

Header
block

‘READING’

whenever a
record is
wanted whenever a
(no preamble) record is

wanted
(no preamble)

Microdrive
channel

data work space

header work space

variables

Diagram 5. The ‘writing’ and ‘reading’ of records.

33

The BASIC command routines:
In this section the actual coding is not going to be discussed but only an
outline of the actions that are followed by the routines. In this way it is
hoped that the user obtains a clear understanding of the functioning of
the Microdrive system.

— FORMAT
The operation of FORMATting a cartridge must obviously be the first
Operation to be discussed, although it is rather complicated.

The steps involved are:

i. An ‘ad hoc’ channel is created for communication between the
Spectrum and Microdrive unit.
The drive number goes into the location CHDRIV and the cartridge name
into the locations of CHNAME.

ii, A ‘Microdrive map’ is prepared in the ‘map area’, ie. between the
system variables area and the channel information area.

— A Microdrive map occupies ‘32’ locations and is used to
hold ‘256' flags that show which sectors of a cartridge are
free for use.

All the bits of the map are initialised to ‘1’ — ‘in use’.

iii, The motor of the Microdrive unit, as indicated by the value in the
CHDRI, is started.

iv. The bytes of the Header work space are initialised.

v. The ‘540’ bytes of the Data block are initialised. (The data area holding
test data.)

vi. Now the actual ‘sectors’ can be created on the tape. The Header block
bytes are copied from the Header work space (27 bytes) and the Data
block bytes are copied from the Data block work space (540 bytes). In
total ‘255’ sectors are created with normally the last ‘60’ or so sectors
overwriting the first ones.
The sectors are numbered from ‘255’ downwards.

vii. The ‘test data’ is now checked by reading back all the records. If the
checksum for a record proves correct then the appropriate bit in the
Microdrive map is reset — free for use.

viii. A second ‘writing’ operation is now performed with zeroes being held
by RECFLAG & RECLEN. The ‘writing’ is performed to all sectors
currently marked ‘free for use’ and in this manner all sectors that are in
working order are made available for files.

34

ix. The Microdrive unit's motor is turned off.

x. The Microdrive channel is reclaimed.

— CAT
The steps involved in producing a catalogue of the files on a cartridge
area are as follows:

i. The required stream is made the ‘current stream’. (By default stream ‘2’
is used.)

ii. An ‘ad hoc’ Microdrive channel is created.

iii. A ‘Microdrive map’ is prepared. As with FORMAT the ‘256’ bits are all
set — in use.

iv. The motor of the Microdrive unit, as indicated by the value in
CHDRIV, is started.

v. Now all the ‘sectors’ of the cartridge are examined in turn.

IF the sector is ‘free for use’ THEN the appropriate bit in the Microdrive
map is reset; ELSE the filename of the sector is considered for entry into
a list of filenames that is built up inthe data area. Only new filenames are
entered; and filenames starting with CHR$ 0 are ignored. All entries are
re-ordered as a new name is added. Only 50 filenames are collected.
The cartridge’s name will be found every time a sector Header block is
identified and loaded into the Header work space of the channel.

vi. The results of making the catalogue are now printed:

— the cartridge name, from HDNAME.
— the various filenames, from the data area.
— the amount of ‘free room’, found by examining the map,
counting the number of reset bits and dividing the answer by
two.

viii. The Microdrive channel and map are reclaimed.

— ERASE
The steps involved in ERASEing a named file from a Microdrive
cartridge are as follows:

i. An ‘ad hoc’ Microdrive channel and a map are created.

ii. The motor of the Microdrive unit, as indicated by the value in CHDRIV,
is started.

iii. The first ‘32 locations of the data area are set to zero. These bytes will
be treated as a map that will ‘list’ the sectors to be ‘reclaimed’.

35

iv. A counter is initialised to ‘1280’; this will be used to count the sectors.

— i.e. at least five passes around the tape if necessary.

v. Now the record descriptors from all the sectors of the tape are fetched
in turn.

IF a sector holds a record of the file THEN the appropriate bit in the ‘list’ is
set.
ELSE the sector is ignored.

If the sector holding the ‘end of file’ record is found then the record
number is copied into the location CHREC.

Sectors will be examined until either the sector-counter reaches zero or
the number of records found for the file equals the number in CHREC.

vi. A further pass of the tape now occurs. On this passage ‘free for use’
record descriptors are written to the sectors that have been marked for
erasure in the ‘list’.

vii. The Microdrive unit's motor is turned off.

viii. The Microdrive channel and map are reclaimed.

— SAVE
This command is the first of the set of commands that ‘write’ data to the
Microdrive cartridge. In all cases a Microdrive map has to be built up for
the cartridge being used in order to show which sectors are free for use.
Also, the filenames that are already declared have to be compared to the
new filename to ensure the new filename is indeed unique.

The actual steps are:

i. An ‘ad hoc’ Microdrive channel and a map are created.

ii. The motor of the Microdrive unit, as indicated by the value in CHDRIV,
is started.

iii, Allthe sectors of the cartridge are examined in turn. A Microdrive map
is built up to show which, if any, sectors are tree for use; and the
filenames are checked to ensure the new filename can be used.

iv. A ‘header’ of nine bytes that describe the ‘program’ are transferred to
the data area of the Microdrive channel.

36

These header-bytes describe the ‘program’ in a similar fashion to that
used in the cassette system:

viz. byte 1 — a code byte
0 = BASIC program
1/2 = Named arrays
3 = Code blocks

bytes 2&3 — the length of the block.
bytes 4&5 — the starting address of the block.
bytes 6&7 — the length of a program alone.
bytes 8&9 — the line number if LINE is used.

v. The bytes that form the ‘program’ are now transferred to the data area
of the Microdrive channel. But, whenever the data area is full (actually
when trying to transfer a 513th byte) it has to be copied to the Microdrive
cartridge. This operation involves:

— Finding the Header block of the next sector on the tape.
— Examining the Microdrive map to see if the sector is
‘free for use’. If it is not then the next sector is considered.
— Copying the ‘540’ bytes from the data block work space
on to the tape — forming a new record.
— Setting the appropriate bit for the sector in the
Microdrive map to show that the sector is now ‘in use’.

The value in RECNUM — the buffer counter— is incremented every time
the operation is performed.

vi. An ‘end of file’ record is now created. This involves setting the ‘end of
file’ flag in RECFLAG and copying, for the final time, the ‘540’ bytes of the
data block work space to a new sector on the tape.

vil. The Microdrive unit’s motor is turned off.

viii. The Microdrive channel is reclaimed.

— LOAD, VERIFY & MERGE
The command routines for these three commands are identical in
respect to the Microdrive software, so they canbe considered together.

The steps are:

i. An ‘ad hoc’ Microdrive channel and a map are created.

ii. The motor of the Mlcrodrive unit, as indicated by the value in CHDRIV,
is started.

37

iii. The data block of the sector that holds the first record of the ‘program’
is copied into the work space.

iv. The first nine bytes of the ‘program’ are taken to hold the header
information and this is interpreted in the appropriate manner — depends
on the command being used and the type of ‘program’. The remainder of
the first buffer is then LOADed, VERIFYed or MERGEd.

v. The other sectors that hold the various records of the ‘program’ are
fetched in the correct order; until a record marked ‘end of file’ is found.

vi. The Microdrive unit's motor is turned off.

vii. The Microdrive channel and map are reclaimed.

— OPEN
Many of the steps performed by the OPEN command routine are
different depending on whether the user wishes to ‘read’ an existing file
or ‘write’ a new file. Remember it is not possible to ‘write’ any additional
data to an existing file in the Spectrum Microdrive system.

The steps are:

i. A Microdrive channel is created. It is associated with the stream
specified in S_STR1, the Microdrive unit specified in D-STR1 and the
filename in N_STR1.

ii. The motor of the Microdrive unit, as indicated by the value in CHDRIV,
is started.

iii. All the sectors of the tape are now examined in turn. A Microdrive
map is built up to show which sectors are ‘free for use’ — will be used
later if ‘writing’ a file. Also, all declared filenames are compared against
the present filename.

iv. — for writing a file.

Ifno sectors are found with the same filename as the new name then it is
presumed that the user wishes to ‘write’ a new file. In this case there is a
jump to step v.

— for ‘reading’ an existing file.

In the case of an existing file being found then the appropriate flags are
set to show that the user wishes to ‘read’; and the first record of the file is
copied into the data work space of the Microdrive channel.

38

v. The Microdrive unit's motor is turned off.

— PRINT (to a Microdrive stream)
In the Spectrum system the execution of a PRINT statement has the
effect of ‘sending’ a series of character codes to a specified device. The
device is identified by its being the object device of the ‘current’ stream.
Therefore when the user enters — PRINT #5; ... (for example), the
characters will be sent to the appropriate output routine. In the case of a
Microdrive stream the routine is named MWRCH (= Microdrive write
character).

The action of the MWRCH routine is to add a single character code to the
buffer of the current Microdrive channel; but on every occasion that the
buffer is found ‘full’ then the contents of the buffer are copied to the next
‘free’ sector on the appropriate Microdrive tape, thereby forming a new
record for the file. The buffer counter (and therefore the record number)
is incremented every time a buffer is copied. Note that an ‘end of file’
record can never be created by the use of PRINT statements.

— INKEY$ (from a Microdrive stream)
The action of the INKEY$ function complements that of the PRINT
command.
On every occasion a character code is required, a call is made to the
MRDCH routine (= Microdrive read character). This routine returns a
single character code from the buffer of the appropriate Microdrive
channel; but whenever the buffer is found to be empty then the next
record of the file has to be fetched from the appropriate Microdrive tape.
The report ‘end of file’ will be given if the present buffer is both empty and
the ‘end of file’ flag is already set.

— INPUT (from a Microdrive stream)
The execution of an INPUT statement is effected by making repeated
use of the MRDCH routine. Single characters are fetched and stored in
the Editing Area until a ‘carriage return’ character is found; then the
INPUT characters are assigned to the specified variable.

— CLOSE
The steps involved in CLOSEing a Microdrive stream are:

i. Examine the value held in CHFLAG associated with the stream. IF the
value is zero THEN the channel is being used for ‘reading’; and all that is
required for the channel to be reclaimed — any unused data in the buffer
is lost. ELSE the channel is being used for ‘writing’; and the following
steps are performed.

ii, the appropriate bit of RECFLAG is set to show that an ‘end of file’
record is to be created.

39

iii. The motor of the Microdrive unit, as indicated by the value in
CHDAIN, is started.

iv. Each sector header is examined until a free sector is identified (by
reference to the current map from the channel).

v. An ‘end of file’ record is entered into the sector.

vi. The Microdrive unit's motor is turned off.

vii. The Microdrive channel and map are reclaimed.

— MOVE
The command routine for this command is rather complicated as there
are so many devices that may be specified in the MOVE statement.
However, the basis of the MOVE operation is the use, repeatedly, of first
a ‘read’ routine followed by a ‘write’ routine.

The following example shows this in a short program.

The statement MOVE “m’;1;‘a" TO “m’;1;"b” can be
affected by:
10 OPEN #4;“m";1;“a”
20 OPEN #5;"m";1;"b”
30 PRINT #5;CHR$ INKEY$#4; GO TO 30
but upon execution it will finish with the ‘end of file’ report —
as the length of the file is not specified.

A note about COPIES:
Itis possible by using, for example — POKE 23791 ,20— before a SAVE
command to make multiple copies of the records for the program being
SAVEd. This operation, of course, devotes a lot more of a cartridge to a
single program; but when LOADing the program subsequently there will
be an impressive saving in the time taken to locate the first, and other,
records of the program.

Looking at records & sectors:
The following pair of BASIC programs show how with a ‘data file’ it is
possible to find the sector-numbers used by the records of the file.

10 OPEN #4;m";1;"a”
20 FOR A=1 TO 3000
30 PRINT #4;CHRS 65;
40 NEXTA
50 CLOSE #4

The above BASIC lines create a file named “a” that holds ‘3000’ A’s.

40

The file “a” can now be read using:

NEW
10 OPEN #4;"m”;1;“a”
20 PRINT “Record”;PEEK 23912, Sector’;PEEK 23885
30 POKE 23856,3
40 LET AS=INKEY$#4
50 GOTO 20

NOTES:
The initial NEW ensures the Microdrive channel is fixed at location
23844 and onwards.

The record-number is read from the data work space and the sector-
number from the header work space.

The POKE 23856,3 puts a high value into CHBYTE and in effect empties
the data buffer.

On the author’s machine the following results were obtained for file “a”:

RecordO Sector 162
Record1 Sector 154
Record2 Sector 146
Record3 Sector 138
Record 4 Sector 129
Record5 Sector 121 (End of file record)

Looking at Microdrive maps:
Very little has been said about Microdrive maps in the discussion so far
because the user never has to manipulate the contents of a map area.
However it is interesting to examine a Microdrive map; and the following
BASIC program shows how this can be done.

— Start by FORMATting a tape, eg. FORMAT
“m’,1,“map”
— use NEW & ENTER, so as to clear any existing maps
and channels
— Enter:
10 OPEN #4;“m’,1;“any” — anew file
20 FOR A=23792 TO 23823 — the map for ‘any’
30 LET N=PEEK A — each byte
40 FOR B=1 TO8— 8 bits toa byte
50 PRINT N/2<> INT(N/2);— each bit a ‘0’ or ‘1’
60 LET N=INT (N/2)
70 NEXTB
80 NEXTA
90 CLEAR #

4

The author obtained the following results using a new cartridge.

10000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000001 10000000
00000000000000000000011111111111
14111411999999141111191111111111
49999999919199999991919919111111

The sector-bits are given in ascending numerical order — sector 0,
sector 1, ..., sector 256 — although they are created in the opposite
order (and occur on the tape in the opposite order).

In the above map sector 0 is non-existent; sectors 151 & 152 are
unusable and presumably are the ‘splice’ region of the tape; and sectors
181-255 are non-existent. There are 178 sectors in working order and,
indeed, CAT 1 & ENTER returned 89 K for the amount of room available

to the user on this tape.

The following results were obtained after SAVEing a 72K BASIC
program.

10000000000000000000000000000000

00000000060000000000000000000000
00000000000001010101010101010101
01010101010000000000000000000000

000000000000000000000001 10000000
O000000000000000000001 1111111111
449499199919919119119114191111111

499999999999999991991191991199111

Note that the records are not in contiguous sectors — after creating a
record there is insufficient time to ‘fetch’ a further 512 bytes of data into
the channel area and still ‘catch’ the next sector.

Final note — IOBORD:
The ‘shadow’ system variable IOBORD, location 23750 dec. (5CC6h),
normally holds ‘0’; and this leads to the border on the TV display to flash
‘black’ when blocks of data are transferred from the Spectrum to a
Microdrive (but not vice versa). The user is able to alter the value in
IOBORD — range 0-7 — and so change the colour of the border during
the output operation.

42

‘Httsehe ee

T.V. Aerial power

Microdrives connector

poooooOoOuoDS
onooooO0o0ooy
oooonnenaG

cartridge SPECTRUM

cartridge
case

Photograph |. The Extended Spectrum System (ZX Interface 1 is not visible)

This Spectrum This Spectrum
is Station ‘2" is Station ‘3°

when Stations when Stations
‘82! ‘T&S

are communicating are communicating

SELF

This Spectrum
is Station 1"

Note: The users of Spectrums ‘2’ & ‘3’ will each have their own views of this network.

Diagram 1. A Network with three Stations.

44

Diagram 1 shows a simple Spectrum network labelled to match the
above definitions.

Using the network:
The operation of the Spectrum network will in most cases be performed
using BASIC statements and the appropriate statements will now be
discussed from the view of the user.

Changing a Station’s number:
When the power is first connected to a Spectrum fitted with a ZX
Interface 1 the Spectrum does not have a station number; however
when the ‘shadow ROM’ is ‘paged in’ for the first time then the Spectrum
will be made Station ‘1’. This station number is held as the ‘shadow’
system variable NTSTAT, location 23749. Thereafter the user can
change the station number of the SELF Spectrum by using:

either FORMAT “N”, station number
or POKE 23749, station number

Station numbers normally have the range 1-64. (This restriction does not
apply when using the network from machine code.)
The current station number of a Spectrum is copied into the channel
area whenever a ‘net channel’ is created; and if the station number is
changed subsequently then it is quite possible, and useful, to have ‘net
channels’ with different station numbers for the receiving, or sending, of
data files.

SAVEing a program, array or code block:
BASIC programs, named arrays and blocks of data can be sent to
another Station — from SELF to IRIS — using a SAVE statement.

e.g. SAVE *n’,2
— where IRIS is station ‘2’.
SAVE *"N”;3 LINE 10
— where IRIS is station ‘3’ and the program is ‘auto-run’.
SAVE *“N’;0 SCREENS
— where IRIS can be anyone who is awaiting a ‘broadcast’.

In the examples above complete communication with the IRIS Station
will only occur if IRIS is awaiting the communication. When IRIS is
specified (other than zero) then IRIS must be waiting for a
communication from SELF; and if the program is sent as a ‘broadcast’
then any Station wishing to be IRIS must be expecting a ‘broadcast’.

45

Communication with a specified IRIS involves a strict protocol of
‘acknowledgements’; whereas a ‘broadcast’ is not acknowledged and
indeed can be ‘received’ by any number of Stations at the same time if
more than one Station is ready for the ‘broadcast’. A program sent as a
‘broadcast’ is handled at a much slower rate (about four times slower)
than a program sent to a specific IRIS.

LOADing, MERGEing or VERIFYing a program, array or
code block:
BASIC programs, named arrays and blocks of data can be received from
another Station — from IRIS to SELF — using, as required and allowed,
LOAD, MERGE & VERIFY statements.

e.g. LOAD *“n’;2 DATA
— the ‘source’ is Station ‘2’.
VERIFY *“n’,0
— the ‘broadcast’ is to be checked against the currently held
BASIC program.
MERGE *“N”;1
— the program received from Station ‘1' will be MERGEd
with the currently held program. Note that it does not matter
if SELF is also a Station ‘1’.

As with SAVEing a BASIC program over the network it is essential that
IRIS is prepared to send the expected material.

The protocol for passing a BASIC program, named array or block of code
from one Station to another over the network is shown in diagram 2.
However it is not possible in a diagram to show a ‘waiting’ computer. In
the example if — SAVE *“N”;2 — should be entered before — LOAD
*“N’"-1 — Station ‘1’ will ‘wait’ for Station ‘2’ to be ready; and vice versa.
Then, only when they are both ‘ready’ will the program be sent. The
program is divided into ‘buffers’ of 255 bytes and whilst a Station is
‘waiting’, either initially or between ‘buffers’, the border of the T.V. screen
will flash (as with SAVEing and LOADing from cassette). The colour of
the border will switch between its ‘current’ colour and the colour held by
the ‘shadow’ system variable |OBORD, address 23750 (range of values
0-7). The user may change the value held in IOBORD as desired.

The using of a SAVE, LOAD, VERIFY or MERGE statement does not
involve the opening or closing of streams. Instead a ‘net channel’ is
created in the SELF Spectrum on an ‘ad hoc’ basis. (Ad hoc = for a
particular purpose.) A ‘net channel’ created for this purpose is ‘reclaimed’
once it is no longer required.

Sending data over the network:
The three BASIC commands — OPEN #, PRINT # and CLOSE # —
allow the user to send data over the network.

46

beforehand:
Users agree to use station numbers ‘1’ & ‘2'
Users agree Station ‘1' will send its program to Station ‘2°

This Spectrum This Spectrum
is Station ‘1’ is Station '2”

to send: to receive:
enter the program enter,
then,

FORMAT “'N";1 FORMAT “N”;2
SAVE *'N’; LOAD “'N’;

afterwards
The identical program will be held in each Spectrum.

Diagram 2. Passing a BASIC program over the network

47

The data may be considered as either:

a collection of ‘printable expressions’ and separated by
‘carriage return’ characters,

or:

a collection of single characters.

The first stage involved in the sending of data is the creation of a ‘net
channel’ for the purpose of communicating from SELF to IRIS. This is
performed by using an OPEN # statement.

e.g. OPEN #4;°N";18
— associate stream ‘4’ with a new ‘net channel’ for
communication from SELF to IRIS, Station ‘18’.
OPEN #5; “n”,0

— associate stream ‘5’ with a new ‘net channel’ that will
‘broadcast’ data.

The detailed contents of a ‘net channel’ will be discussed later in this
chapter; but a ‘net channel’ always contains a ‘net buffer’ of 255
locations. This means that up to 255 bytes of data can be collected
before being sent to IRIS over the network.

The second stage involves the filling of the ‘net buffer’ with the necessary
data. This is performed using a PRINT # command with the necessary
stream number.

If the data is to be considered as ‘expressions’ (to be read using INPUT,
see below) then care must be taken to ensure that the ‘carriage return’
characters are placed appropriately; i.e. as one presses ENTER after
replying to an INPUT prompt.

Examples of sensible PRINT # statements are:

PRINT #471
— the characters that go into the ‘buffer’ are: '1* & ‘carriage
return’.
PRINT #4;"ONE”
— the characters that go into the ‘buffer’ are: ‘O’, ‘N’, ‘E’ &
‘carriage return’.
PRINT #4;A'B$
— the characters that go into the ‘buffer are: the printed
characters of the variable A, ‘carriage return’, the printed
characters of the variable B$ & ‘carriage return’.

48

A ‘net buffer’ can only hold 255 characters and when an attempt is made
to ‘buffer’ a 256th character then this character is ‘preserved’ whilst the
full ‘buffer’ is sent to IRIS. The ‘preserved’ character afterwards forms the
first character of the next ‘buffer’.

The third stage involves the closing down of the stream. The BASIC
command CLOSE # first sends any partially filled ‘net buffer’ to IRIS,
secondly ‘reclaims’ the ‘net channel’ and thirdly CLOSEs the stream by
writing zeroes into the ‘stream data bytes’ (original values for streams
0-3).

E.g. CLOSE #4
— closes down the stream.

Receiving data over the network:
The four BASIC commands — OPEN#, INPUT#, INKEY$# and
CLOSE# — allow the user to receive data over the network. As with the
operation of sending data the ‘data’ may be considered as; ‘expressions’
and required to be separated by ‘carriage return’ characters; or as a
collection of single characters.

Once again the first stage involves OPENing a stream.
E.g. OPEN #7;“N”;1
— associate stream ‘7’ with a new ‘net channel’ for communication from
IRIS, station ‘1’, to SELF.
OPEN #6,“n",0
— associate stream ‘6’ with a new ‘net channel’ that will receive a
‘broadcast’.

The second stage involves the use of INPUT# and INKEYS#
commands. But note that it is inappropriate to read ‘single character data’
using INPUT#.

Examples of these commands are:

INPUT #7;A
— a set of ‘received bytes’, limited by a ‘carriage return’
character are assigned to the variable A. The ‘expression’ to
be assigned must be numeric, i.e. would be accepted by —
VAL“... expression ...”.
INPUT #7;AS
— the ‘expression’ is considered as a string of characters (of
finite length).
INKEYS #7
— the string returned by this function will be the next
‘received character’.

49

In all cases the ‘net channel’ is examined to determine whether there is
any ‘received data’; if not then a fresh ‘buffer’ is taken from IRIS. However
if the ‘last buffer’ was marked ‘end of file’ then no request is made to IRIS
and the error report ‘end of file’ is given.

There is a special feature about the use of INKEY$# when used with
specific IRIS stations (not a ‘broadcast situation). INKEY$# is normally
expected to return the ‘next received byte’ as a single character string;
but it has been arranged that INKEY$# will return a ‘null’ string if IRIS is
not awaiting a request from SELF to send another ‘buffer’. This facility
allows the user of SELF to poll Stations and collect data from any Station
that is ready to send it.

The third stage involves closing down the stream by using a CLOSE#
command. Any unused ‘received data’ is lost.

E.g. CLOSE #7
— ‘reclaim’ the ‘net channel’ and make the ‘stream data
bytes’ zero.

The protocol for passing data over the network is shown in diagram 3.
Once again it is not possible to show how the ‘source’ Station waits for
the ‘destination’ Station to be ready; and vice versa.

The technical details of the Spectrum network:
The following details will be of interest to Spectrum owners who use the
network from BASIC, as outlined above; but a clear idea of just how the
network is managed is really only needed by users who wish to use, or
modify, the network from machine code.

The network itself is a 2-wire system. One wire acts as a ground
reference point — nominally Ov., and the other wire as a signal wire which
is active high, nominally 5v., and inactive low, as ground.

At any instance in time the network can be considered as _ resting,
unused; or claimed, in use. Although whilst claimed the network will
frequently be inactive — but never for as long a period as if it were
resting. It is always the ‘source’ computer that ‘claims’ the network;
whilst the ‘destination’ computer has the minor role of ‘reading’ the
network and then replying if required.

50

beforehand:
{B Users agree to use station numbers ‘1’ &'2"

Users agree Station ‘1’ will send a set of numbers to Station ‘2°

This Spectrum This Spectrum
is Station 1" On is Station ‘2°

to send to receive
enter and run the enter and run the
program:
10 FORMAT “N”;1
20 OPEN #5;"N".2
30 FOR A=1 T0240
40 PRINT #5:A 40 PRINT X,
50 NEXTA 50 GOTO 30
60 CLOSE #5

Diagram 3. Passing data over the network — using PRINT# & INPUT#.

51

The protocol for communicating from one Station to another follows a
strict format and in the discussion below the steps will be discussed
initially from the view that the user’s Spectrum SELF is sending one or
more ‘buffers’ of data to the ‘destination’ Station IRIS. In the first instance
No timing details will be given but they will be discussed at the end of the
chapter.

Claiming the network:
This is the first stage in any communication. As the network may be either
resting or claimed by another Station, the user's Spectrum SELF must
examine the network repeatedly until it is satisfied the network is indeed
resting. The time spent doing this ‘examination’ is a ‘sufficient’ time plus
a ‘randomised’ extra amount. SELF now sends out, slowly, a ‘leader’
pulse and its 8-bit station number. The value sent is taken from NTSTAT
and is the ‘global’ station number; this is not necessarily the same as the
value held in NCSELF. The separate bits of the station number are sent
‘inverted’ with the most significant bit being sent first. Each bit activates
the network only if it was originally a zero; and makes the network
inactive if it was a ‘1’. Before handling another bit, a check is made to
ensure that the network has the expected state from the present bit; and

values of the 8 bits

_actve v ce oe Tf oY oO active

inactive inactive

:
send send 8 bits of the
SCOUT ‘global’ station number

resting? leader

network claimed

time ———»»

Diagram 4. Station ‘10' sending its SCOUT.

52

if the wrong state is found then the whole operation of claiming the
network is started again. Once all the bits of the station number have
been sent (and read-back successfully) the network can be considered
to be claimed. The action of sending the station number forms a
SCOUT: and all Stations that are listening to the network set their timings
from when they first detect a SCOUT ‘leader’ pulse.

Diagram 4 shows the Station ‘10’ claiming the network by sending its
SCOUT.

Sending a HEADER:
Once the network has been claimed by the sending of a SCOUT, an
8-byte HEADER is sent. The data for the HEADER comes from the
HEADER bytes of the net channel.

Anet channel has the following structure:

bytes contents
0-1 Address 0008h
23 Address 0008h
4 “N” (“N” + 80h if ‘ad hoc’)
5-6 Address OUT_N(output address)
7-8 Address IN_N (input address)
9-10 Number 0114h (276 dec. bytes in a net channel)

; the following eight locations hold the HEADER bytes

11 NCIRIS (the IRIS Station number
i.e. the ‘other’ Station)

12 NCSELF (own Station number, same as NTSTAT
when channel created)

13-14 NCNUMB (block number, range 0-65535)
15 NCTYPE (ordinarily ‘0’ — for data

but ‘1’ for ‘end of file’)
16 NCOBL (output buffer length, range 0-255;

will be ‘0’ when buffer is used for ‘receiving’)
17 NCDCS (8-bit checksum for data)
18 NCHCS (8-bit checksum for preceding seven bytes)

;the next two locations are used during ‘receiving’

19 NCCUR (position of last character taken from buffer)
20 NCIBL (the number of bytes that may be read

from the data buffer)

:the data buffer is used for either ‘receiving’ or ‘sending’

21-275 NCB (255 byte data buffer)

53

The HEADER bytes describe the ‘data block’ that will be sent later. The
‘data block’ will be a copy of the present buffer.

The HEADER bytes are sent by calling the OUTPAK subroutine in the
‘shadow’ ROM. The E register will hold the value 08h and the HL register
pair the address of NCIRIS.

The OUTPAK sends out bytes of data as follows:

e aninitial active leader

then for each byte:

e an inactive starting period
« an inactive/active period for each reset/set bit; the least significant

bit is handled first.
e anactive stop period

finally:

* the network is made inactive

Diagram 5 shows the steps.

Following the sending of the HEADER bytes the value of NCIRIS is
examined and if it is other than ‘0’ then a ‘response’ is awaited from IRIS.
A‘0' would indicate a ‘broadcast’ which is never acknowledged.

A ‘response’ is a single byte of data and it is handled by IRIS using its
OUTPAK subroutine. The SELF Spectrum accepts the ‘response’ as
YES if a byte of value ‘1’ is received from IRIS without undue delay.

The INPAK subroutine is used to collect the ‘response’. On entry to this
subroutine the E register holds the value 01h and the HL register pair the
address of the ‘shadow’ system variable NTRESP, address 23757.

If there is not a correct ‘response’ received before ‘time-out’ then the
whole operation of claiming the network, sending a SCOUT, sending a
HEADER and awaiting a ‘response’ is repeated. To the user this situation
is signalled by the colour of the border remaining a single colour — the
IOBORD colour. However when the INPAK subroutine returns a byte
and it is found to be a ‘1’, then the ‘data block’ can be sent.

54

bits of Ist. byte bits of 2nd byte
active as ‘ aa active

- - TTT VT T “Pt

23 4 5 6 2 ofl 2. etc..

inactive [re es) Ha | 1 _4 inactive

tine —> .F

start
period

Ist
stop
period

Diagram 5. Bytes of data being sent by the OUTPAK subroutine

Sending a data block:
The present ‘buffer’ of characters is sent by once again calling the
OUTPAK subroutine. On this occasion the E register holds the current
length of the ‘buffer’ — copied from NCOBL, and the HL register pair
holds the address of the first ‘buffer’ byte — the address NCB.

Once the ‘data block’ has been sent the NCIRIS variable is examined
again and a ‘response’ is awaited unless the ‘data block’ formed part of a
‘broadcast’. As before if there is not a correct ‘response’ received before
‘time-out’ then the whole operation has to be repeated from claiming the
network afresh.

Block numbers:
The ‘data blocks’ are considered as being numbered, from 0-65535. The
creation of a ‘net channel’ makes the first block ‘number 0’ and subse-
quent ‘data blocks’ are numbered in order. The operation of sending a set
of ‘data blocks’, as would be involved in the sending of a long BASIC
program over the network, therefore involves the sending of block
‘number 0’, block ‘number 1’, , block ‘number n’; where ‘n’ is the
number of the ‘end of file’ block.

55

The steps involved in receiving one or more ‘data blocks’ will now be
discussed.

Identifying a SCOUT:
The first stage in establishing communication from IRIS to SELF is the
identification of a SCOUT (not necessarily from IRIS). A SCOUT can be
found by finding the network becoming active after a resting period.
This stage therefore involves SELF repeatedly examining the network
until it is satisfied that the network is resting (taking ‘sufficient’ time
without any extra amount, see earlier) and then waiting for the network to
become active. This point corresponds to IRIS sending the ‘leader’ to its
SCOUT — this always activates the network. The actual station number
that IRIS is sending as a SCOUT is not required by SELF, so after
identifying the start of the SCOUT the SELF computer simply waits until
the network becomes inactive following the 8-bits of the station number.

Itis intended that any Spectrum ‘listening’ to the network will always find
the ‘ciaiming’ SCOUT.

Receiving a HEADER:
The IRIS computer sends an 8-byte HEADER shortly after its SCOUT
has claimed the network, and the SELF computer ‘reads’ the eight bytes
using the INPAK subroutine. The bytes are loaded into the ‘shadow’
system variables NTDEST — NTHCS, addresses 23758-23765. Dia-
gram 6 shows the details involved in the reading of bytes from the
network. The most important point to be made is that the ‘period of
uncertainty’ is minimised by using electronic circuitry in the ZX interface
1 to synchronise the reading of the bits to their ‘mid-cycle’ points.

Examining the HEADER:
Once received, the HEADER has to be examined in order to decide
whether or not to accept the ‘data block’ that is expected to follow it.

The steps involved are posed as a series of questions and in all cases a
false answer leads to the SCOUT, HEADER & data biock being ‘passed
over’ and the next SCOUT sought.

« were eight bytes actually found?
e does the sum of the first seven bytes give the same value as the eighth

byte, i.e. is NTHCS, the HEADER checksum, correct?
e isthe block number as found in NTNUMB the expected block number?
— Should it be the previous block number then IRIS is trying to repeat
a block that SELF has already received but the ‘response’ was lost. In
this case the block will be ‘accepted’ but ‘passed over’.

56

leader
period it oxlast start period

stop
period bits of byte stop period

te ii + A = ~— A___-

“active bed ey
|
10 bo Bod OG 6 7
I

Sones Fae lee ea age eo rt
inactive { f f f f t f

time ——p>

Ne
-—_, Le perfarm 8 data reads

780 delay
waits period

hardware identifies
the start of
inactive period

Diagram 6. Bytes of data being received by the INPAK subroutine.

Ifa ‘broadcast’ is sought, is the HEADER part of a ‘broadcast’, i.e. are
NTDEST & NCIRIS both zero? Otherwise, with a specified IRIS
Station, does the HEADER say the ‘data block’ is for SELF, i.e. are
NTDEST & NCSELF equal?

and
Is the IRIS Station using the required station number, i.e. are NTSRCE
& NCIRIS equal?

Once the HEADER has been accepted the ‘response’, a byte of value ‘1’,
is sent using the OUTPAK subroutine. Remember that if a ‘broadcast’ is
accepted then no ‘response’ will be sent.

Receiving a data block:
As long as the IRIS station does receive the ‘response’ from SELF before
‘time-out’, if not handling a ‘broadcast’, then IRIS will send a ‘data block’.

The SELF computer receives this ‘data block’ by loading the value found
in NTLEN — the length of the ‘data block’ — into the E register, the
address NCB — the base address of the data buffer of the current ‘net
channel’ — into the HL register pair and calling the INPAK subroutine.

57

Once received, the sum of the bytes in the new ‘buffer’ is compared
against its checksum — found in NTDCS, and the ‘response’ sent if the
numbers do match. If the checksum fails then the IRIS station will start
afresh with an attempt to send the data; whilst SELF tries again to read it.

If all has gone without any problems the ‘data buffer’ of the ‘net channel’
will now contain up to ‘255’ fresh bytes of data.

Further points:
Competition between Spectrums trying to claim the network:
It is intended that there should be minimal contention between
Spectrums when more than one machine is trying to claim the network
at the same time. The use of the ‘extra’ randomised time when trying to
find the network resting, and the sending of the ‘global’ station number
as a SCOUT, both help to resolve contention. Indeed if two or more
Spectrums start sending out SCOUTS simultaneously (hopefully itself
unlikely) then the Station sending the lower valued station number
should claim the network successfully in all cases; the other Spectrums
backing off and trying again later. The users can help with the last point
by using different ‘global’ station numbers whenever possible.

Confusion when receiving ‘broadcasts’:
Itis possible that if more than one Station are sending ‘broadcasts’ at the
same time that the receiving Station may on occasions take one ‘data
block’ from one machine and the next block from another. This occurs as
the blocks that form a ‘broadcast’ are sent with large delays between
them — so as to ensure that the ‘recipient’ has sufficient time to handle
the data no matter what other work needs to be done; whilst the
‘recipient’ will overall spend a lot of time listening to the network.

This problem can only be overcome by the users taking care when
sending a lot of ‘broadcast’ material.

Time-out using INKEY$
A station that is listening to the network in consequence of a LOAD,
VERIFY, MERGE or INPUT command, will ‘wait’ indefinitely if the correct
SCOUT, HEADER & ‘data block’ fail to appear on the network and are
interpreted correctly. However when a byte of data is required in conse-
quence of an INKEY$# command the the Station will only wait until
‘time-out’ before returning a ‘null’ string.

End of file details — sending data:
As new bytes of data are added to the buffer of the ‘net channel’ a record
of the ‘length’ of the buffer is kept in the variable NCOBL and the value in
NCTYPE will always be zero. Then, when an attempt is made to enter a

58

256th. byte the present buffer will be sent as a ‘data block’ containing 255
bytes of ordinary data. However if the last of a set of data bytes has been
entered into the buffer then NCTYPE will be given the value ‘1’ and the
buffer sent as a ‘data block’ of up to 255 bytes of closing data.

This operation of making a ‘data block’ the ‘end of file’ block only occurs
with:

* completion of the SAVE operation.
* closing the stream using CLOSE #.

End of file details — receiving data
As bytes of data are read from the buffer of a ‘net channel the value of the
variable NCCUR is increased until the point is reached when there are no
bytes left unused. Normally following a request for another character a
fresh ‘data block’ would be sought but this only occurs if the current value
of NTTYPE is ‘0’. If NTTYPE holds ‘1’ then the ‘end of file’ has been found
and the appropriate error message is produced.

Timing details with respect to the network:
A Spectrum has a clock rate of 3.5 mHz. and in the following discussion
the timing details wil be given in T cycles where each cycle takes
1/3,500,000 of a second.

Sending data:
The network is considered to be resting if it is inactive for approximately
10,500 T cycles (3 ms.).

The SCOUT leader starts 22 T cycles after the last examination of the
network and lasts for 181 T cycles. The 8-bits of the station number also
last for 181 T cycles each. The pulses are ‘read-back’ after 136 T cycles.

The network is now claimed and the leader to the 8-bytes of the
HEADER follows after a further 271 T cycles.

The HEADER bytes are sent using the OUTPAK subroutine and the
format is always the same:

leader period — 98 T cycles

then for each byte:

a start period of 40 T cycles
8-bits each of 40 T cycles
a stop period of 145 T cycles (but the final stop period is 86 T
cycles).

59

The ‘data block’ will follow the HEADER after approximately 600 T cycles
in the case of a ‘broadcast’, but delayed for up to 9000 T cycles if a
‘response’ is to be found and examined.

The duration of the ‘data block’ will be from 544 T cycles — one byte, to
approximately 128,000 T cycles (37 ms.) — 255 bytes.

Diagram 7 shows these timings.

Receiving data:
Of necessity the receiving of data complements the sending of data but
the following points can usefully be made.

The network is examined repeatedly over a period of approximately 7000
T cycles (2 ms.) to prove that the network is indeed resting.

Thereafter the network is examined once every 55 T cycles until it is
found active. This should lead to a SCOUT being identified within the
first third of the SCOUT’s leader period. The actual details of the SCOUT
are not required so the Spectrum wastes time until the SCOUT is
finished.

A call is made to the INPAK subroutine to collect the 8 bytes of the
HEADER that will come next. This subroutine is entered during the
inactive period (271 T cycles) that separates the SCOUT and the
HEADER.

The network is then examined every 35 T cycles in order to identify the
presence of the leader period. Thereafter the synchronising hardware of
the ZX Interface 1 identifies the falling edge at the beginning of a start
period. There will always be a ‘degree of uncertainty’ in finding the onset
of the start period but the use of hardware to perform this task reduces
the uncertainty considerably.

The rest of the start period is ‘passed over’ and the 8 bits of the byte are
then collected at the rate of 1 bit every 40 T cycles. Again there will be a
‘degree of uncertainty’ involved in this progress as the clock of the
Spectrum producing the signals may be running at a slightly different
speed as compared to the clock in the receiving Spectrum. The system
of synchronising on the start period allows for a difference of about 5 per
cent between clock speeds.

Once the bytes of the HEADER have been obtained, they must be

examined. If a ‘broadcast’ is being handled then no ‘response’ is to be
sent and the Spectrum must be ready to find the leader to the ‘data

60

data block
data sent at approx.

SCOUT HEADER 7 bytes a millisecond
usage

3 z i et
l i

resting t I ear es | [——T~| resting

period 11 | allowance y [allowance ; Period
i s¥ | | for ‘|

randomised ! ‘response’ ‘response’

delay

time ———>>

Diagram 7. Timing diagram for ‘sending’ over the network.

block’ within 600 T cycles of the end of the HEADER bytes. However if
the ‘sending’ Spectrum is expecting a ‘response’ then this must be sent
within approximately 9000 T cycles.

The ‘data block’ is collected by calling the INPAK subroutine a second
time; and again the ‘receiving’ Spectrum has 9000 T cycles in which to
send its ‘response’.

61

62

Chapter 5

The RS232 Link

Introduction
The third facility offered by the ZX Interface 1 is the RS232 link.

The two principle uses of the RS232 link are expected to be:

— linking a Spectrum to a printer (other than the ZX
printer)

— linking a Spectrum to another computer (possibly
another Spectrum — an alternative to using the Local
Area Network).

But the link can be used between a Spectrum and any other RS232
compatible device.

Using the RS232 link:
The rate at which data is transferred between devices joined by an
RS232 link is termed the ‘baud rate’; and upon initialisation the ZX
Interface 1 gives a default rate of ‘9600'.

Note: The theoretical rate at which bytes of data are transferred is given
by:

baud rate/11 bytes per second.

However a byte of data is only transmitted when the receiving device
signals that is indeed ready to accept the byte of data and there must be
gaps between bytes; so the actual rate at which bytes are transferred is
usually considerably less than that implied by the baud rate.

Setting the baud rate:
The baud rate will normally be set by using a FORMAT statement;

e.g. FORMAT “b":110

63

and the following rates are permitted;

50, 110, 300, 600, 1200, 2400, 4800, 9600, 19200.

Note that the lowest rate is ‘50’ and the highest ‘19200° and if a number
outside this range is used ina FORMAT statement then the baud rate will
be set to its limit value as appropriate.

e.g. FORMAT “b”;0 — sets the baud rate to ‘50’.

Also, if a FORMAT statement gives an intermediate value then the
discrete baud rate below that value is used instead.

e.g. FORMAT “b”;1500 — sets the baud rate to ‘1200’.

The only effect of a FORMAT is to set the values in the two bytes of the
system variable BAUD and it is therefore possible to set the baud rate by
using POKE statements or machine code ‘LD’ instructions if the user so
wishes. In such a case the value for BAUD is given by:

(3500000/(26*baud rate)) -2

and it is possible to set the baud rate to either a standard or a non-
standard rate.

SAVEing a program, array or code block:
BASIC programs, named arrays and blocks of data can be sent over the
RS232 link by using the SAVE command. E.g.

SAVE *“b”
— a copy of the presently held program and its current
variable are sent.
SAVE *"b” SCREENS
— acopy of the current display and attributes file is sent.

LOADing, MERGEing or VERIFYing a program, array or
code block:
BASIC programs, named arrays and blocks of data can be received over
the RS232 link. E.g.

LOAD *"“b”
— aBASIC program and its variables will be LOADed.
MERGE *"b”
— a BASIC program and its variables will be MERGEd.

64

VERIFY *“b” DATA 32000, 100
— a block of data will be VERIFYed against the present
contents of the RAM.

In all the cases using SAVE, LOAD, MERGE or VERIFY the device

expression “b” or “B” must be used as the full range of values, 0-255

decimal, must be allowed for each byte.

Also note that the data will only be transferred over the RS232 link if the
‘receiver’ signals to the ‘sender’ that the device is ‘ready’. As with the
network the border colour of the screen during data transfers and waiting
periods is specified by the value held in the system variable IOBORD and
can be changed by the user as required.

Sending data over the RS232 link:
As with the Local Area Network, the sending of data involves the

OPENing of a stream to be associated with the RS232 link before a
PRINT statement is used. E.g.

OPEN #4;"b”
— stream ‘4' is OPENed for use with the RS232 link.

Astream OPENed in this manner can now be used for either the sending
or receiving of bytes of data. This is possible as there is no ‘buffer system
and each byte is handled in turn.

The action of OPENing a stream for RS232 communication has the
effect of adding ‘11’ bytes of data to the channel information area. These
bytes are:

bytes contents
1-2 Address 0008h.
3-4 Address 0008h.
5 “T” (“T" + 80h if ‘ad hoc’)
6-7 Address OUTT2 (output address)
8-9 Address IN-T2 {input address)

10-11 Number ‘11’. (eleven bytes in channel)

The ‘shadow’ ROM routines IN-T2 and OUT_T2 are the actual routines for
handling the ‘receiving’ or ‘sending’ of a byte of data via the RS232 link.

Once a stream has been OPENed for RS232 communication the follow-
ing commands can be used to handle information,

65

Sending:

PRINT #4;A
— the current ‘printed’ value of the variable ‘A’ will be ‘sent’;
followed by a ‘carriage return’.
PRINT #4;"String of characters”
— the characters of the string will be sent; followed by a
‘carriage return’.

Receiving:

INPUT #4:A$
— the set of characters received before a ‘carriage return’
will be assigned to A$.
LET A$=INKEY$#4
— the ‘next’ character will be assigned to AS. Note that
CODE A$ will be zero if the user's Spectrum is not ‘being
sent’ a character.

ACLOSE statement, e.g. CLOSE #4 will lead to an additional ‘line feed’
character, OAh, being sent before the ‘11’ bytes of the RS232 channel
are reclaimed.

Note that if the extra ‘line feed’ character proves a nuisance then its best
to avoid CLOSEing RS232 streams — using instead CLEAR # or an
‘error situation’ to reclaim the channel

The “‘T” system:
The device expressions “t’” and “T” also enable the RS232 link. These
expressions allow for an ASCII character and Sinclair token ‘text mode’.
The reason for this mode is that it allows for the command LIST #n,
where nis an OPENed RS232 stream.

A LISTing would be produced by, for example:

OPEN #4;"T"
LIST #4
CLOSE #4 — and the ‘line feed’ will probably be required.

66

In this ‘text mode’ the character codes are moditied as follows:

« control codes (00h-1Fh) are ignored — except for ‘carriage return’
(ODh) which is modified to give ‘carriage return’ and ‘line feed’ (ODh &
OAh),

¢ graphic codes are changed to ‘?’ (3Fh),
¢ Sinclair tokens are expanded recursively.

Extended use of the “T”’ system:
It is possible for the user to join the Spectrum to an RS232 compatible
printer and PRINT using any one of the three following methods:

1. use only a “B” stream - thereby allowing for the full range of bytes
O0h-FFh. This method leaves the user with the task of handling
control codes, graphic characters and tokens; but there are no
limitations as to what can be done.

2. Using both a “T” stream and a “B” stream. When using this method
the user can allow ‘printable characters’ to be handled by the “T”
stream; and supplement the RS232 output by including “B” stream
characters as requied.

E.g. To send a printer ‘escape’ codes one might use:
10 OPEN #4:“T”: OPEN #5;"B” — “T” & “B” streams
20 PRINT #5;CHR§$ 27;CODE “kK”; — Escape “K”
30 PRINT #4;“Print this now”

3. Using an extended “T” stream.
As is mentioned above, a “T” stream will ignore all the codes 0OOh-1Fh
(with the exception of ODh — ‘carriage return’). This results in the user
being unable to include the ‘positional’ controllers ‘,’, ‘AT and ‘TAB’ in
PRINT statements associated with a RS232 “T” stream. (Indeed
spurious characters will be created if AT & TAB are followed by high
parameter value.)

The following BASIC program shows how the “T” stream can be
ammended to cater for these ‘positional’ controllers if the user wishes
to include them in PRINT statements.

67

Notes:
Line 10 — Stream ‘2’ is being used; a machine code routine is located at
65000-65184; and a BASIC loader in lines 9800-9993.

Line 9830 — The ‘column’ number can be altered as required — here itis
set to ‘40’ columns. The current ‘tab’ position can be found by PEEKing
location 23728.

Line 9990 — The ‘tab’ position is incremented with every character that is
printed; until the ‘column’ value resets the ‘tab’ position to zero as a line is
filled.

Line 9991 — A ‘carriage return’ character also resets the ‘tab’ position.

Line 9992 — Deals with ‘PRINT comma’. The ‘comma-tab' positions in
this program are ‘0’, ‘8’, ‘16’, ‘24’ and ‘32’; and the incrementing value of
‘8’ (second ‘8’ in this line) can be altered if required. The PRINTing of a
comma will always advance the ‘tab’ position a minimum of one column.

Line 9993 — This line deals with AT and TAB. The column values of
these controllers are taken ‘modulo’ the column width as specified in
location 23729. All the colour item controllers are ignored correctly.

Note: The effect of PRINTing with this program is to re-direct the output
that normally goes to the upper part of the T.V. display, to the RS232
device.

10 OPEN #2;"t”: CLEAR 64999: GO SUB 9800
20 REM... your printing. . .
30 STOP

9800 REM #2, AT TAB subroutine
9810 REM uses z,21,22,z3
9820 REM set tab and col values
9830 POKE 23728,0: POKE 23729,40
9840 REM look at stream #2
9850 LET z1=PEEK 23578+256*PEEK 23579
9860 IF NOT z1 THEN POKE 23610,23: STOP
9870 REM look at T channel
9880 LET 22=21+PEEK 23631 +256*PEEK 2363243
9890 IF PEEK z2< >CODE “T“ THEN POKE 23610,23: STOP

9900 REM alter output address
9910 POKE z2+ 1,232
9920 POKE 22+2,253
9930 REM enter machine code
9940 FOR z=0TO 184
9950 READ z3
9960 POKE 65000+z,z3

68

9970
9980
9990

9991
9992

9993

NEXT z
RETURN
DATA 254, 165, 48, 45, 33, 59, 92, 203, 134, 254, 32, 32, 2, 203,
198, 56, 22, 245, 253, 52, 118, 253, 126, 119, 253, 190, 118, 48,
7, 205, 19, 254, 253, 54, 118, 1, 241, 24, 10
DATA 254, 13, 32, 9, 175, 50, 176, 92, 62, 13, 195, 60, 12
DATA 254, 6, 32, 31, 237, 75, 176, 92, 30, 0, 12, 28, 121, 184,
40, 8, 214, 8, 40, 4, 48, 250, 24, 242, 213, 62, 32, 205, 232, 253,
209, 29, 200, 24, 245
DATA 254, 22, 40, 12, 254, 23, 40, 8, 254, 16, 216, 17, 106, 254,
24,3, 17, 98, 254, 50, 14, 92, 42, 81,92, 213, 17, 5, 0, 25, 209, 115,
35, 114, 201, 17, 106, 254, 50, 15, 92, 24, 235, 17, 232, 253, 205,
85, 254, 87, 58, 14, 92, 254, 22, 40, 8, 254, 23, 63, 192, 58, 15, 92,
87, 58, 177, 92, 186, 40, 2, 48, 6, 71, 122, 144, 87, 24, 242, 58,
176, 92, 186, 200, 253, 150, 119, 32, 2, 130, 200, 62, 32,213, 205,
232, 253, 209, 24, 235

69

The technical details of the RS232 link:
The RS232 link of the ZX Interface 1 provides for both the ‘sending’ and
‘receiving’ of serial data between the user's Spectrum and a second
device (possibly also a Spectrum).

The passing of data over a RS232 link is handled byte by byte and a byte
of data will be transmitted only if the receiving device has signalled that it
is indeed ready to receive.

The RS232 link is a 6-wire system. Two wires are used during ‘sending’,
two during ‘receiving’, the fifth wire is a grounding wire and the sixth wire
carrying a nominal 9v (not normally used).

The protocol for ‘sending’:
The wire along which the bytes of data are sent is called RXdata (short
for ‘received data line’) and the level of the signal on this wire is set by the
‘sending’ device. The second wire involved in ‘sending’ is called DTR
(short for ‘data terminal ready’) and this is set by the ‘receiving’ device.

The operation of sending a byte of data involves the following steps:

i. Wait until the line DTR becomes high.
ii. Send the byte of data.

The two steps then have to be repeated for every subsequent byte of
data.

It is usual for the ‘receiving’ device to lower the signal level on the DTR
once it has received a byte of data, so as to prevent the ‘sender’ from
passing a further byte before the ‘receiver’ is ready for it (but see later).

The format of the RXdata signal is shown in diagram 1.

Note that ‘11° bits are sent in total for each byte of data:

— astart bit
— the eight data bits
— two stop bits (may be considered as a double length stop
bit)

and that there is no parity bit.

The protocol for ‘receiving’:
The wire along which the bytes of data are received is called TXdata
(short for ‘transmitted data line’) and the level of the signal is set by the

70

bits of data byte (inverted)
active active

Popo tale gd oR [ee

inactive

7 stop bit
wait until — double
ah found length.

start
bit

time ————j»

Note: length of bit = 47 + 26"BAUD T states.

Diagram 1. A byte of data being ‘sent’ via the RS232 link.

‘sending’ device. The second wire involved in ‘receiving’ is called CTS
(short for ‘clear to send line’) and this is set by the ‘receiving’ device.

It follows that if two Spectrums are linked together by the
RS232 system that RXdata, DTR, TXdata & CTS of one
Spectrum will be connected to TXdata, CTS, RXdata &
DTR, respectively, of the second Spectrum.

The operation of receiving a byte of data involves the following steps:

i. First examine the value in the ‘shadow’ system variable SERFL (serial
flat). If the value in the low byte is other than zero:—
THEN take the value in the high byte to be the required byte (it had been
found earlier — see below); make the low byte of SER-FL zero before
returning. ELSE proceed to ‘receive’ one, or two, bytes of data.
ii, Make the CTS line have a high signal level.
iii. Wait for the signal on TXdata to go high — this will be the beginning of
the ‘start bit’.

71

iv. Read the eight bits of the byte.
v. Save the complete byte.
vi. Make the CTS line have a low signal level.
Note: Although the CTS is now low it is possible that the ‘sending’ device
may still send a further byte of data — this does not occur when a
Spectrum is ‘sending’.
vii. Repeat steps iii. & iv. if a second byte is being sent. This second byte
goes into the second location of the system variable SER-FL; and the first
location is set to the value ‘1’.
However if there is no further byte found within a given period of time, itis
assumed that there is no second byte to be considered; SER_FL’s low
byte stays holding zero.
vii. The byte saved in step v. is retrieved and is taken to be the required
byte.

Timing details with respect to the RS232 link:
The duration of each data bit sent over the RS232 link is given by:

length of bit = 47 + 26*BAUD T states.

where a single T state is a 3,500,000th of a second.

The value of BAUD is given by:

BAUD = (3500000 / (baud rate*26)) — 2

If the baud rate ‘19200’ is considered then the length of each bit should
theoretically be:

3500000/19200
182.3 t states

Whereas, the actual rate is:

BAUD INT (3500000/(19200*26)) — 2
7

and the length of a bit is:

47 + 26*BAUD
177 T states

le. Ata baud rate of ‘19200’ the error is less than 3%; and, at slower rates
the ‘error’ will be much less.

72

Linking ‘other’ computers
to the Spectrum system:

The Spectrum's RS232 link allows for communication between the
Spectrum and any other RS232 compatible computer. This means that
other computers can use the Microdrive, the local area network and the
ZX printer by treating the Spectrum as a ‘controller’. It is probably
possible to make a ‘specific’ interface between an ‘other’ computer and,
for example, a Sinclair Microdrive; but it is likely that it will be cheaper
and easier to use a Spectrum instead.

The following discussion describes how, in outline, an Acorn BBC
microcomputer can be linked to a Spectrum system.

The BBC microcomputer has a RS423 5-pin socket that is directly
compatible with the Spectrum’s RS232 connector. For communication
in both directions the user has to connect the TXdata, RXdata, DTR, CTS
& GND of the Spectrum to the data out, data in, RTS, CTS & GND of the
BBC microcomputer, respectively. The baud rate will be ‘9600’ by default
on both machines.

Using the ZX printer:
The easiest example to consider first is the use of the ZX printer to print

under the direction of the BBC microcomputer.

In the Spectrum the program is simply:

MOVE “b”TO #3 & ENTER

Ofcourse, after connecting the ZX printer and the RS232 link connector.

In the BBC microcomputer the user enters — for DIRECT printing:

*FX5,2 — select serial device
CTRLB — to ‘turnon’ the printer

ata — All printing goes to the ZX printer
CTRLC — to ‘turn off’ the printer

73

Or, in a program, perhaps:

10 *FX5,2
20 VDU2
30 *FX21,2

100 VDU3

Using the Microdrive:

select serial
= CTRLB

discards any characters in the
RS423 bufter

— The printing (use *FX3,7 if the
output to the screen is not required)
= CTRLC

The examples in this section show how the BBC microcomputer can use
the Microdrive to store a ‘data file’.
Note: It is possible to handle BASIC programs — treating them as a
collection of ‘data-bytes’; but the author does not know how to SAVE and
LOAD via the RS423 interface of the BBC microcomputer — presumably
it can be done using assembly language routines.

Creating a Microdrive file:
In the BBC microcomputer enter:

10 DIMA$(2)
20 LETA$(0)=“aaaa”
30 LETA$(1)=“bbbb”
40 LETA$(2)=“cccc”
50 *FX5,2
60 VDU2
70 PRINT 3

80 PRINTAS(0)
90 PRINTAS(1)

100 PRINTA$(2)
110 VDU3

Whilst, on the Spectrum use:
10 OPEN #4;“b”
20 OPEN #5;“M";1;“BBC1”
30 INPUT #4;A
40 FORN=1 TOA
50 INPUT #4;A$
60 PRINT #5;A$
70 NEXTN
80 CLOSE #4
90 CLOSE #5

74

;create some data

;select serial printer
sprepare to send
ithree items of data to form
sthe file

send the data

;stop sending

sread on stream ‘4’

jstore on stream ‘5’

jfetch ‘number’

;fetch each data-item
ssend it to Microdrive buffer

sclose the input stream

;create the Microdrive file
sand reclaim the channel

It is, of course, possible to have the BBC microcomputer send the name
of the file-to-be; and for the Spectrum to create such a file with the first
data-item in the file being the ‘length’ of the file.

Reading a Microdrive file:
The reverse operation might be (knowing that file “BBC1” has three
string data-items):

In the Spectrum enter:

10 OPEN #5;“M";1;“BBC1” ;read on stream ‘5’
20 OPEN #4;"b” ;send on stream ‘4’
30 FORN=1TO3
40 INPUT #5;A$;fetch each data-item
50 PRINT #4;A$;send each data-item

60 NEXTN
70 CLOSE #4
80 CLOSE #5

And, in the BBC microcomputer the following steps are suitable for
receiving data over the RS423 link.

10 *FX2,1 sselect RS423 input
20 *FX3,6 ;select ‘no output’
30 *FX21,2 jinitialise RS423 buffer

40 DIMAS$(2) sthere are three data-items
50 FORN=0TO2
60 INPUTRS$ suse R§ to collect the items
70 LETA$(N)=R$;move items
80 NEXTN
90 *FX3,4 sselect screen output

100 *FX2,0 ;select keyboard input

110 PRINT A$(0),A$(1),A8(2) :the proof!

The above examples do show that it is indeed practical to use the
Microdrive to store files tor access by ‘other’ computers communicating
with the Spectrum system via the RS232 link.

The final program:

If the user wishes to receive data byte-by-byte, rather than use INPUT,
then the following BBC microcomputer program might be useful.

75

10 FX2,1 — select RS423 input *FX 2, 1
20 A% = 145

30 X%=1
40 R = USR (&FFF4) — getasingle byte
50 R =(RAND &00FFO000) / 65536
60 IF R <> 0 THEN PRINT CHR&(R);
70 GOTO 10 — back for the next byte

Notes:

Line 50 — this isolates the ASCII value from the complex value
returned by the USR function.

Line 60 — the value held in R can be manipulated in this or any other
suitable manner.

This final program complements the BASIC program given in the
section ‘Extended use of the “T” system’; and can be used to handle
‘output’ sent over the Spectrum's RS232 link.

76

Chapter 6

Using Machine Code
Author’s note:
It is not intended that readers unfamiliar with Z80 machine code should
read this chapter in detail. There are already many books available that
teach machine code programming — including the author's
‘Understanding Your Spectrum’ — and a good working knowledge of
machine code programming is essential if the reader wishes to write
his/her own routines.

It is also helpful to have to hand a machine code ‘editor’ program, or
‘assembler’; and the ‘SPDE’ program from Campbell Systems remains
the favourite of the author — it can be transferred to a Microdrive
cartridge with ease and is very ‘user friendly’. (Note that ‘SPDE’ is only an
‘editor and ‘disassembler’; and is comparatively slow when compared to
full ‘assemblers’.)

Introduction:
This chapter is divided into two parts:

a. Using the Hook Codes
b. Adding new statements

as these two operations are totally distinct one from another.

a. Using the Hook Codes:
In the Spectrum system the Restart 0008h routine is used to handle
errors. These errors are numbered and in the standard Spectrum have
the range FFh to 1Ah. An error is handled by using a RST 0008h
instruction followed by a DEFB (defined byte) set to the required value.

For example:

ORG 7nOH 732000 DEC
7000 OF EXAM RST H 72) RESTART INSTRUCTION

7DOL OR DEFB GBH NONSENSE IN BABIC’

ENS

77

Which in BASIC would be:

POKE 32000,207:POKE 32001, 11:RANDOMISE USR 32000

A DEFB of a value outside the normal range still gives an error situation
but the report message is ‘rubbish’ as there are only appropriate
messages for the values in range.

Ina Spectrum fitted with a ZX Interface 1 the ‘shadow’ ROM is paged-in
by the instruction-fetch operation on location 0008h, and in the program
of the ‘shadow’ ROM the value of the DEFB is considered further.

— DEFPB’s in the range 00h-1Ah are passed back.
— DEFB’s in the range 1Bh-32h are the ‘hook codes’.
— DEFB’s in the range 33h-FEh give the ‘shadow’ error

report ‘Hook code error’.
— A DEFB that is FFh gives the ‘shadow’ error report

‘Program finished’ — that is a new feature.

The DEFB’s in the range 1Bh-32h allow the user to call various
subroutines in the ‘shadow’ ROM. That is, the use of — the instruction
RST 0008h and the DEFB ‘hook code’ — is equivalent to — call ‘shadow’
ROM subroutine xxxx —.

In all cases when this operation is used, the ‘shadow’ ROM is paged-in,
the subroutine executed, and the ‘shadow’ ROM paged-out. The user is
never left with the ‘shadow’ ROM active.

The ‘hook codes’ 1Bh-32h will now be discussed in turn; but first note:

No registers are preserved — so take care to save register-values, such
as counters, before using a hook code. Also: preserve H’L’, the return
address to BASIC, when using the more complex hook subroutines.

During all 1/O transfers the maskable interrupt is ‘off’; and certain hook
subroutines ‘turn off this interrupt, whilst others require it ‘off before
being called.

Hook code 32h is reserved by Sinclair Research Ltd.

Hook code 31h ‘inserts’ the new system variables and should be used
whenever this is required (see below).

Hook code 1Bh — Console input:
This subroutine waits for a key to be pressed on the keyboard of the
Spectrum. Then, when akey is pressed, the character code is found and

78

returned in the A register. The maskable interrupt must be ‘on’.
Keystrokes that do not give character codes are ignored.

It can be used as follows:

HEH

In the above example the keyboard is read ‘255’ times and the character
echoed to the screen.

HOOK CODE 1Ch — CONSOLE OUTPUT
This subroutine performs the same operations as — LD A,02h, CALL
SELECT & RST 0010h, i.e. the character presently held in the A register
is printed using stream ‘2’ — normally the upper part of the TV screen.
Note that scrolling is suppressed. The previous example can be rewritten
as:

La

EACR = PUSH BC

AST oO0dR

TBOO GOFF CONSE

79

HOOK CODE 1Dh —RS232 INPUT:
This subroutine accepts bytes of data via the RS232 link. The ‘data
transfer rate’ is controlled by the value of BAUD; and the border colour by
the value in IOBORD.
It is best to clear SER_FL before collecting the first byte just in case a
‘late’ character is still held.

The example shows characters being received using this hook code.

Remember that SER_FL does not exist before ‘shadow’ system variable
insertion — use hook code 31h if required (see below)

2000 DEL

4 each

23 ga alm 2

my ica

Se

“a

BB

x eal S

HOOK CODE 1Eh — RS232 OUTPUT:
This is the corresponding output subroutine. Again, BAUD determines
the ‘data transfer rate’ and |OBORD the border colour..As usual no data
byte will be sent unless DTR is holding a high signal.

The following example complements the example for RS232 input.

ars == 7B00H F
RSADUT LD 0B, OFFH & COUNTER
EACH PUGH UNTER

ib
2 auTFUP? TQ SEND

RESTORE COUNTER

LOOP BACK
RET FINISHED

708 i0F8
7BGA £9

80

The example sends a set of ‘255’ bytes each of which is of value 41h.

HOOK CODE 1Fh — ZX PRINTER OUTPUT:
This subroutine is identical to ‘console output’ except for the use of
stream ‘3’ instead of stream ‘2’. The output normally therefore goes to the
2X printer.

HOOK CODE 20h — KEYBOARD TEST:
This subroutine uses the following instructions to test for a key
depression:

aR wR a ;CLEAR THE A RE
DBFE TH A, {OFEB)
ESIF aNd AFH
Balr SUR AFH

OFF 40D A, OFF

ENE

The use of — RST 0008h & DEFB 20h — instead of the above five
instructions does not really offer any advantage.

HOOK CODE 21H — SELECT DRIVE
This is the first of thirteen hook codes that refer to the Microdrive.

The ‘Select drive’ subroutine starts the motor in a specified Microdrive
unit; with the Microdrive being numbered 1 — 8. Selecting drive ‘0’ turns
off all Microdrive unit motors. The subroutine returns with the maskable
interrupt turned ‘off if a drive motor is started.

This subroutine will lead to the generation of the report ‘Microdrive not
present’ if the operation cannot be performed correctly.

For example; Microdrive drive motor ‘1’ can be started by:

GRE FROG
7B00 3E01 SELSDR LD 4, G1H 3 CO NICRODRIVE *4°
7002 CF RST O008H DRIVE’
7003 21 DEFR 21H
7004 FR El TENABLE INTERRUPTS
7B05 £9 RET ;FINISHED

END

(The drive motor can be stopped from BASIC by creating any error
report; e.g. CAT & ENTER.)

81

HOOK CODE 22h — OPEN FILE:
This hook code allows the machine code programmer to create an ‘ad
hoc’ Microdrive channel; with the base address of the channel being
returned in the IX register pair.
The hook code is used as follows:

— ensure the ‘shadow’ system variables exist (if needed
using hook code 31H — see below)

— save the values of H’L’
— enter the drive number into D_STR1
— write a filename into suitable location(s)
— enter the descriptor of the filename into N__STR1; in the

order i. low length, ii. high length, iii. low starting address,
and iv. high starting address

— call ‘Open file’
- restore H’L’ before returning to BASIC

The hook code can only be used to create a channel for a ‘data file’; and
performs actions similar to the OPEN command.

— IF the filename is a new and THEN the file is open for
‘writing’,

— ELSE the file is for ‘reading’ and the first record is found
and loaded

And, once created the file can be manipulated as follows:
— Make Microdrive channel the current channel, i.e. use

PUSH IX, POP HL, LD (CURCHL), HL.
then either:

— write toa file using RST 0010h; with the characters in the
A register

— read from the file by using CALL 15E6 (INCH or INPUT-
AD).

Note that ‘writing’ the 513th, 1025th, . . . character will lead to a further

record being created; and similarly during ‘reading’ further records are
fetched as required.

An example of the use of ‘Open file’ is given in the discussion of ‘Close
file’ which follows.

HOOK CODE 23h — CLOSE FILE:
The actions of this subroutine are very similar to the effect of using
CLOSE; associated with a Microdrive ‘data file’. If the file, whose base
address is in the |X register pair, is open for ‘writing’ then any data as yet
‘unsent’ goes to form an ‘end of file’ record; and the channel is reclaimed.
But when the file is for ‘reading’, any data in its data area is lost; and the
channel is reclaimed.

82

The following example shows the creation of a channel for a file ‘a’ on
Microdrive ‘1’. The file is then ‘written-to’ or ‘read-from’ before being
‘closed’.

TEM

IN CASE NONEXISTENT

ee tes

es ca It

PROS CHARACTER

Peo fas Exe es dey

oF sCALL ‘OPEN FILE

22
BEES f EVE CHANNEL

Et Fo 1 CHANNEL

225150 ub HL) HL
sh FUE OF ¢

OLBROR Lb Enter only one of
ie Pe following blocks of
es Eaty PUSH code depending on

: whether you are
‘writing’ or ‘reading’

3E41
a?

PCONTINUE WITH
Ci POF BC

o3 BEC BC

7a 12 af SHAS COUNTER REACHED TERO?

83

Value of relative
jump is different
for ‘writing’ and

The reader should first use the above example to create a new file ‘a’ on
drive ‘1’; and then read the data back. The jump is ‘20 Fé’ when ‘writing’
and ‘20 EE’ when ‘reading’.

HOOK CODE 24h — DELETE FILE:
This subroutine can be used to ‘erase’ a named file from a Microdrive
cartridge. The parameters of the file have to be prepared in D_LSTR1 &
N_STR1. Both ‘program files’ and ‘data files’ can be ‘erased’ by this hook
subroutine. For example the file ‘a’ on drive 1’ can be ‘erased’ as follows:
(But keep a copy for later, by using for example MOVE “m”,1;“a” TO
“m"31;"b")

ORG 7
NARE EDU 7

TERTER 13 INST

He

LINES OF
TOLB OF DELETE RST CALL * DELETE FILE*
TRIE 28 BEFR 24H
THD BF EqL
TOE Ei HL pRESTORE HL"
THE BF EXE
7H20 C9 RET ;PEMISHED

END

HOOK CODE 25h — READ SEQUENTIAL:
This hook code allows the user to fetch the ‘next record’ of a named ‘data
file’ into the data work space of its Microdrive channel.

On entry to the subroutine the IX register pair must hold the base address
of the Microdrive channel and the channel variable CHREC the number
of the ‘present record’. CHREC will always be incremented.

The following example shows the six records of the test file “a” being
fetched in order:

84

ORS TOOK

TEFF WARE, = EGH TCFFH

332000 BEC
sWiLL HOLD *A?

sENTER 13 INSTRUCTION LINES OF COMMON - SEE “CLOSE FILE’

TRIB EF READSO HST OG08H yCALL ‘OPEN FILE”
7BIC 22 DEFB 22H
7Bid £04072 = EACH = PALL gPRINT THE RECORG-NUMBER

7820 CF RST yCALL “REAB SEU i

7B2i 25 SEF
7022 189 ak FOR EACH RECORD

7340 BOTESS

747 BnES x VRAKE AICRODRIVE CHANNEL
7049 Et HL ; CURRENT AGAIN

TB4A 225150 ICURCHL) HL

7OaD C9 FINISHED

The above example only produced the result “012345” but this does
show that the records have indeed been fetched — although not read.
Note how the example finishes at ‘end of file’.

HOOK CODE 26h — WRITE RECORD:
This hook code allows the user to create a record. As usual the IX register
pair has to hold the base address of the Microdrive channel. that
contains the data for the record. The record will be created in the next
free sector on the Microdrive tape.

For example:

TAGOH £

HARE TEFFH HOLE ‘A’ - OR OTHER

pENTER T INES GF THE ° £106] FILE ERANFLE - FOR

PwRITL UT CHANGE LD BC,ORRBH T2 LD BC, d200H

AnD 3 CLOSE FILE’ TO fF 24 "WRITE FILE’

PCHANBE THE NAME GF THE FILE IF

ALREADY HOLDS A FILE 7A’

END

USING A CARTRIDGE THAT

It is sensible to use ‘close file’ when writing the ‘end of file’ record.

85

HOOK CODE 27h — READ RANDOM:
This subroutine is similar to ‘read sequential’ but the record fetched is the
CHREC-record.

HOOK CODE 28h —READ SECTOR:
This subroutine fetches the record from the sector specitied by CHREC.
The carry flag will be returned reset if the checksum of the data is correct;
and set otherwise. The user has to select the Microdrive unit before
using this hook code (or the next two).

HOOK CODE 29h — READ NEXT:
This subroutine fetches the record from the ‘next’ sector that passes the
READ head of the Microdrive unit. The sector’s number will be available
in HONUMB. Again the carry flag is returned reset only if the checksum
on the data proves correct. Note that there is insufficient time between
sectors to ‘fetch’ and ‘move’ a whole record before the following header
block is reached; hence records for a named file are never in contiguous

sectors.

HOOK CODE 2Ah — WRITE SECTOR:
This subroutine performs the opposite action to ‘read sector’. The data
currently held in the data buffer is copied to the sector whose number is
specified by CHREC.

HOOK CODE 2Bh — CREATE BUFFER:
This subroutine should create a Microdrive channel (and a map area)
for the file specified by D.STR1 & N_STR1. However due to a
programming error this hook code has the same effect as ‘open file’.
(This may be corrected in later ‘shadow’ ROMs).

The following example shows, however, how a Microdrive channel and
map area can be created.

7080 ORE Fig0H pule72 Def

SCHANNEL BYTES

700 TB PH" + BOH

yCAD HOC? BUFFER)

86

5
5 Hy

ise

=

DEFR

VCHNAP ARE THE THO BYT
7 SEPARATEL|

87

tFILEWARE *A°

ta ee

GOH
00H
90H
OFFH
OFFH iFF FF 1S END OF DATA

PRLOCK PREAMBLE
TRE = 7DOGH ;

START LD HL, (CHAN)
PUSH HL
DEC HL

12000 uo BE,OO20H 5°32" LOCATIONS
COSSIA CALL -MAKEROOM «© CREATE THE HAP AREA

por HL
PUSH HL jCOPY BASE ADDRESS
wR A yHAP BITS 10 BE ALL RESET
1p oR Z0H

EACHAONE LU iHLI,A
INC HL
BINZ — EACH#ONE

;THE BASE ADDRESS OF THE MAP AREA 15 ON THE MACHINE

sSTACK. THE CHANNEL CAN NOW BE CREATED.
7h14 28535C LB HL, (PROG! BEFORE PROG,
FRU 2B DEC HL

7ha £5 PUSH HL
7B19 ES PUSH HL sTAKE THO COPIES

88

HONE FOR 1Y
ATH OF CHANNEL

PDI cas5i6
7022 218070
7h25 BL

CREATE THE CHANNEL AREA

14300

Th28 £4 P FETCH THE ADDRESS

7h20 BDTSIA ib (TAACHRAP? L

TH2F DOF418 Lo (IX+CHRAP+GTH) A
7832 09 RET i FINESHED

HOOK CODE 2Ch - DELETE BUFFER:
This subroutine is most straightforward. The channel (and its map)
whose base address is held in the IX register pair is-reclaimed. All the
‘higher’ dynamic areas are thereby moved down by ‘627’ bytes.

HOOK CODE 2Dh — OPEN NETWORK CHANNEL:
This is the first of four hook codes for accessing subroutines that deal
with the local area network. The first subroutine creates a ‘B’ network
channel. The ‘destination’ station number is to be in D_STR1; and the
SELF station number in NTSTAT.

As usual the base address of the new channel is returned in the IX
Tegister pair. Bytes of data can be sent or received using this channel —
with RST 0010h or CALL 15E6 — once the channel has been made
‘current’. (See example below.)

HOOK CODE 2Eh — CLOSE NETWORK CHANNEL:
This subroutine can be used to close a network channel whose base
address is in the IX register pair. If the channel has been used for
‘sending’ then any ‘unsent’ data will be marked ‘end of file’ and ‘sent’; but
in a ‘receiving’ channel any unused data is discarded.

The following example shows data being ‘sent’ over the network using
machine code (from station ‘1’, to station ‘2').

ORS 7BOGH

STRTSDUT LB

ThO7 DOES PUSH

89

{CURCHLD AL

TR TURN

Ik

AL

TTRY FETCHING
SBACK IF STATIS

The network channel can be reclaimed by using ‘close network channel’
in a finite situation.

90

Hook code 2Fh — Get packet:
This subroutine allows the user to fetch a particular SCOUT, HEADER &
‘data block’. The net channel variables NCIRIS, NCSELF & NCNUMB
have to have the necessary values. The subroutine will return carry-set if
‘time-out’ occurs or the checksums fail to be correct. As usual there is no
‘time-out’ when awaiting a broadcast.

Hook code 30h — Send packet:
This subroutine allows the user to send a SCOUT, HEADER and ‘data
block’. On entry the A register is to hold zero for an ordinary block of data;
and ‘1’ for an ‘end of file’ block. Both this hook and the previous one will
cause NCNUMB to be advanced if they are successful.

Hook code 31h — Create-system variables:
This is a ‘dummy’ hook code and can be used to ensure that the ‘shadow’
system variables are ‘inserted’. The following BASIC program shows this
hook code in use.

NEW & ENTER
10 PRINT “Before”
20 FOR A= 23734 TO 23791
30 PRINT PEEK A;” ”;
40 NEXTA
50 POKE 32000,207 — RST 0008h
60 POKE 32001,49 — ‘create system variables’
70 POKE 32002,201 — RET
80 RANDOMIZE USR 32000
90 PRINT’

100 PRINT “after”
110 FOR A=23734 TO 23791
120 PRINT PEEK A;” ”;
130 NEXTA
RUN & ENTER

Remember the system variables are only inserted once and cannot,
thereafter, be removed. If needed SAVE the above program on cassette
(not Microdrive) and enter NEW before re-LOADing.

b. Adding New Statements

It is possible by using machine code to add new statements to the
Spectrum’s BASIC — when using a Spectrum fitted with a ZX
Interface 1. This is feasible as the user can change the address in the
‘shadow’ system variable VECTOR and thereby break into the BASIC

91

interpreter. The ‘rules’ governing the addition of new statements are
complicated but once understood some useful statements can be
produced.

The BASIC interpreter in the ‘main’ ROM:
In the first instance it will be useful to discuss how BASIC statements are
handled by the machine code program resident in the ‘main’ ROM of the
Spectrum.

There are three stages involved:

a. The user enters a ‘tentative’ BASIC line into the ‘edit buffer’. (This line
is displayed with tokens expanded in the lower part of the TV display.)
The BASIC line is made up of a set of BASIC statements — for
simplicity it is best to consider single-statement lines from now on in
the discussion.

b. The pressing of the ENTER key signals that the user wishes to have
the ‘tentative’ line considered for the correctness of its syntax. In
testing the syntax of a statement the BASIC interpreter first identifies
the ‘command’ of the statement (e.g. PRINT from a statement such as
10 PRINT 4+2). Next the ‘command routine’ for that command is
executed — but only as far as is required for checking syntax.

IF the syntax of the statement is correct THEN the statement is
accepted; and goes to its correct place in the program area (assuming
a single-statement line starting with a line number). The ‘editor’ is
called for the next line to be entered.

ELSE a jump is made to the ‘error handling routine’ — using a RST
0008h instruction followed by a DEFB that shows the error type. This
will lead to the ‘editor’ being called again and the ‘tentative’ line
displayed with the ‘syntax error marker’.

c. The third stage involves the ‘execution’ of a statement (the so-called
‘run-time’ operation).
In run-time the ‘command’ of a BASIC statement has again to be
identified. Next, the ‘command routine’ is found and executed.

IF the statement is executed without error THEN the next statement is
considered.

ELSE the ‘error handling routine’ will be called but this time a ‘run-
time’ error report will be displayed in the lower part of the TV screen.

From the above discussion it follows that for a statement to be
‘acceptable’ and ‘executable’ there must be the necessary ‘syntax’ and

92

‘run-time’ parts of a ‘command routine’ for the command of the
statement.

The BASIC interpreter in the ‘shadow’ ROM:
The machine code program in the ‘shadow’ ROM forms an extension to
the ‘main’ ROM program; and is called into use every time the ‘error
handling routine’ is entered.

The ‘shadow’ program allows for a ‘second thought’ about the ‘error’ that
occurred in the ‘main’ program; and it is thereby possible to provide the
‘syntax & run-time’ command routines that handle the Microdrive, Local
area network and RS232 link.

In the ‘shadow’ ROM program there are routines to handle statements
that start with:
CAT, FORMAT, MOVE, ERASE, OPEN, SAVE, LOAD, VERIFY,
MERGE, CLS, & CLEAR
(CLOSE is handled separately as it has its own ‘paging’ address)

A simplified view of the path through the ‘shadow’ ROM program can be
considered to be:
e Inthe case of an error, identify the command of the statement.

e IF the command is not in the above list THEN return to the ‘main’ ROM
program via the address held in VECTOR.

e ELSE jump to the appropriate command routine — leaving it via
ST_END in syntax time, END1 in run-time, Restart ROMERR if giving
a ‘main’ error report and Restart SH_ERR if giving a ‘shadow’ error
report — in all cases a return is made to the ‘main’ ROM program.

THE SYNTAX OF NEW STATEMENTS:
When the user wishes to add a new statement to the BASIC of the
Spectrum it is necessary to define a statement which ‘fails’ the syntax of
both the ‘main’ and the ‘shadow’ ROM programs. Note that such a
statement cannot start with any of the eleven commands for which there
are command routines in the ‘shadow’ ROM program (see above).

There are a great many statements that could be defined, although the
author would suggest that the reader tries a variety of simple statements
before embarking on any complex statements.

The following list contains examples of suitable statements:

Using LINE — not normally a command but can be made
to be one.

e.g. 10 LINE — may draw a particular line.

93

Using DRAW — with anew set of parameters.
e.g. 10 DRAWn — may underline ‘n’ characters.

Using CIRCLE — with anew set of parameters.
e.g. 10 CIRCLE n — may draw acircle of diameter ‘n’.

Using BORDER — with a new set of parameters.
e.g. 10 BORDER *b,i,p — the separator “’ prevents any ‘main’ ROM

actions. The statement might change the
BORDER, INK & PAPER colours in a certain
manner.

The above are only suggestions. Remember it is possible to use
anything that ‘fails’ the existing syntax (& run-time) checking procedure.

USING THE ‘SHADOW’ SYSTEM VARIABLE — VECTOR:
The first point to be made about this system variable is that it normally
holds (after ‘insertion’) the value 01FOh (496 dec.). This is the ‘shadow’
address known as ERR_6.

— This can be shown by entering:
CAT & ENTER (or anything else that ensures ‘insertion’)
PRINT PEEK 23735 + 256*PEEK 23736

The actual lines from the ‘shadow’ ROM program that use VECTOR are:

ERR_Y LDHL, (VECTOR) fetch the vectored address
JP (HL) sthis is normally ERR_6

BRRGG. ssc ies sallow existing error through

The ‘shadow’ system variable VECTOR normally holds the address
ERR_6 (01F0h) and this acts as a vectored address.

The first stage to adding new statements is the changing of the contents
of VECTOR so as to allow for further tests to be made on the error-
statement.

The following BASIC example shows the address held in VECTOR
changed; so that the routine EXTEND is included.

CAT & ENTER — ensure ‘insertion’
10 POKE 23735,0 — VECTORisto hold 7D00h
20 POKE 23736,125 — (32000 dec.)
30 POKE 32000,195 — These three numbers are
40 POKE 32001,240 — the EXTEND routine
50 POKE 32002,1 — only JP ERR_6
RUN & ENTER sand the Spectrum should not crash!

USING THE POINTER CH ADD:
CH_ADD (character address) is the ‘main’ system variable held in
locations 5C5Dh & 5C5Eh (23645/6 dec.); and it is used to address the
characters of a statement. On entry to the routine EXTEND the system
variable CH_ADD points to the command of the error-statement.

The two ‘main' ROM routines — Restart 0018h, GET_CHAR and Restart
0020h, NEXT_CHAR — return to the user, in the A register, the current
character addressed by CH_ADD and the next character, respectively.
Both routines ignore space characters and control codes.

GET_CHAR and NEXT_CHAR are very useful routines as they provide a
suitable manner of manipulating CH_ADD.

THE CALBAS SUBROUTINE:
The'CALBAS subroutine is located at ‘shadow’ address 0010h (16 dec.)
and can be called using the instructions RST 0010h. This subroutine
allows the user to call a ‘main’ ROM subroutine whilst the ‘shadow’ ROM
is ‘paged-in’.

The instruction RST 0010h has to be followed by the address of the
‘main’ subroutine required.

E.g. Tocall GET CHAR whilst the ‘shadow’ ROM is in use:

RST CALBAS 07
1806 SETACHAR

Note that all registers are returned as normal from the ‘main’ subroutine.

SYNTAX & RUN-TIME MODULES:

The command routine that is to be added to handle a ‘new statement’ has
to have two parts:
a. The syntax module
The steps involved in checking the syntax of a statement involves the
identification of:
« the command
* any necessary separators
« numeric expressions
« string expressions
* variables
and finally:
« the end of the statement
which will be a‘? or a ‘carriage return’

95

The subroutines that can be used to help in these steps will be discussed
in the examples that follow.

b. The run-time module
In this module the actual ‘work’ of the statement is performed and this will
depend on the statement being implemented.

Actual ‘new statements’:
A set of ‘new statements’ will now be discussed in detail:

LINE
A statement that ‘frames’ the current display mimicing the line:
PLOT 0,0: DRAW 255,0; DRAW 0,175: DRAW -255,0: DRAW 0,-175

The syntax module:
In the first instance the command has to be handled by:
« Fetch the command code — using GET_CHAR
« Compare the code to LINE (CAh/202 dec.)

IF the code fails to match THEN jump to ERR_6
ELSE proceed to the syntax module proper.

« Advance CH_ADD past the command — using NEXT_CHAR
« Callthe ST_END routine so as to confirm the end of the statement; and

‘accept’ the statement in syntax time.

In assembly language this is:

ORB 732000 DEE
700 D7 EXTENR RST

7H 1800 DEFY aR FETCH THE COMMAND CODE
fi op LINE 318 17 LINE?

uF 7, LINESSYN yIURP IF 50
JP ERRHS LET ERROR THROUGH

7020 ORG FD204 LINE STATEMENT

SSVNTAY RODULE
7920 97 LINESSYH RST CALBAS

702i 2600 DEFH = NXT#CHAR PADVANCE CHEADE

7823 COB705 CALL «= STSEND INFIRM END OF STATEMENT &

TIN SYHTAX TIME
{TEMPORARY RUN-TIME RODULE =

7026 C3CHOS LINEARUN JF END! FEXTT ~ NO WORK DONE
END

96

The reader is advised to enter the above twenty bytes of code, change
the value in VECTOR and try the statement —

LINE — before proceeding to consider the run-time module that follows.

The run-time module:
The LINE#RUN routine to produce a ‘frame’ that goes around the edge
of the T.V. display is:

ORS

LINE#RUN LD AST PLOTTED POSITION

F2F 110104
TOR? DF
7033 HAIG

73S
yORAW 255.0

TE, 04
] RS CALBAS
TASC BAD DEFH © -DRAWHI
TOE OUFFOG (B BE, QOFFH

FR41 UFFFF i DE, OF FFF
744 07 CALBAS

TAS BAZ4 DRAWHS PDRAR -255,0
7047 G1OGAF ip BC, GAFGOH

7E4A UFFFF uD DE, OFFFFY

7040 D7 RST CALBAS
TRE BAZ4 DEFd = 24BAH ;

oe pis ENDI }

In the above routine there are four calls to the DRAW 3 subroutine that
draws a line from the ‘current position’ to a position BLC away. The DE
register pair holds SGN y and SGN x, respectively.

DRAW n
The second new statement to be discussed allows the user to underline a
specified number of characters. The statement mimics the line:

PRINT OVER 1;“____.
and ‘n’ specifies the number of ‘underline’ characters used. The range of
‘n’ will be from 1 to 255.

97

The syntax module:

The steps are:
e Fetch the command code — using GET_CHAR
« Compare the code DRAW (FCh/252 dec.)

Proceed to the syntax module proper if the codes match.
Advance CH_ADD past the command — using NEXT_CHAR
Look for a ‘numeric expression’ — using EXPT_INUM
(expect an expression which must prove to be numeric)

e Callthe ST_END routine so as to confirm the ending of the statement;
and ‘accept’ the statement in syntax time.

In assembly language this is:

INAAND SEARCH’

Po ERR JEN OF 786
;DRAW N - SYNTAX MODULE PROPER ;

a6 #32096 8EC
DRAWHGYN. RST

OF W PADVANCE CHADD
AST
DEF SFIND & NUMERIC

EXPRESSION
7b CDB7O5 CALL STRERD iEXIT IN SYNTAY TIRE

7bA? CACiOS — DRAWERUM IF END!

END

Note that in syntax time a call to EXPT_1NUM only checks the syntax of
an expression and does not evaluate it. Also, CH_ADD is advanced to
the first code after the expression and the code is already in the A
register.

98

Again the reader might like to confirm that the syntax module functions
correctly before proceeding to consider the run-time module that follows.

The run-time module for DRAW n;

70694 yS2105 DEC

749 07 DRAWSRIN RST = CALBAS

7DEA FALE BEFe FNDQINT!

ThAE A? A

Fal 2005
TDEF FORGIOS

HI, DRAWHRL

pSAVE THE VALUE
HOVER CONTROL CODE

PRINT OVER

gMAKE TT OVER i;
fAND NOW

Note that in run-time a call to EXPT_1NUM evaluates the numeric
expression and places the result on the calculator stack; from where it is
collected by FIND_INT1.

Also see how a ‘main’ error report is produced by loading the system
variable ERR_NR with the appropriate value and exiting via Restart
ROMERR.

CIRCLE n
The third new statement to be discussed allows the user to draw a circle
of diameter ‘n’ around the current position.

In BASIC this might be mimiced by:
10 LET X=PEEK 23677: LET Y=PEEK 23678
20 CIRCLE X,Y,n — user supplies n
30 POKE 23677,X: POKE 23678,Y

But ‘errors’ occuring whilst in CIRCLE n will be trapped!

99

The syntax module:

The steps are:
e Fetch the command code and compare it to CIRCLE
* Look for a ‘numeric expression’

Call the ST_END routine
In assembly language this is:

RUMERIC EXPRESSION

SYNTAX TINE TBF CF 2

The run-time module:

This module is to include ‘error trapping’ handling — i.e. any error that
occurs will not result in the production of a report; instead the BASIC
interpreter will proceed to the next statement.

The assembly listing for the module is:

ORG 7DY9H

HL {ERRRSP?
HL

HE, ERRADD

HL

ERRSSP) SF

CALBAS

FINDING!

7ON TO CALCULATOR STACK

100

iON CALC
AND THE

LLATOR

Note the steps involved in ‘trapping errors’.
Before:
e the current error address (ERR_SP) is saved
¢ anew error address is put on the machine stack
« ERR_SP is set to point to the address
After:
« the original address for ERR_SP is retrieved
* the ‘error’ is cancelled by setting ERR_NR to FFh.

BORDER *b,i,p
The fourth new statement to be discussed allows the user to change the
TV display to:

a BORDER colour ‘b’
an INK colour ‘i’
a PAPER colour ‘p’

These colours will be ‘permanent’. In addition the attribute bytes of the
screen will hold the new PAPER colour. In BASIC this would be like:

BORDER b: INK j: PAPER p: CLS
but the current picture will not be removed as with CLS and the ‘current
print position’ will remain unaltered.

101

The syntax module:

The steps are:
« Fetch the command code and compare it to BORDER
« Confirm the presence of the separator “’
e Look for three numeric expressions separated by commas
e Call the ST_END routine

In assembly language this is:

FEE?

CAEO7D

CHEADD
SEPARATOR T?

RORDSSI

Note how the three numeric expressions are fetched in turn by using
EXPT_1NUM and that the separators between expressions must be

102

‘commas’. BORD_ERR uses the Restart SH_ERR routine to signal an
error that in run-time would be indicated by the error report ‘Nonsense in
BASIC’.

The run-time module:

TELL EF L

TEL2 OF AORDSRY RLCA
TELS 07
7EL4

Pil

NOW CHANG:

BORDER?

FEONSIDER THE NEW INK COLOUR
RST CALBA'
BEFa | FNDSINTE FETCH I

OUT OF RANGE

;CHANGE &

103

Note that if the separator *’ is omitted from the syntax requirements of
the BORDER “b,i,p statement then b can be left to be handled by the
‘main’ BASIC interpreter - but the syntax module must consider all parts
of the statement even if a part is ignored by the run-time module.

CONCLUSION:
The four examples of ‘new statements’ for the Spectrum system are only

meant to introduce the subject. It is hoped that the reader is now ready to

try adding his/her own statements. Ideally the machine code

programmer should have to hand copies of:
‘Understanding Your Spectrum’ by Dr lan Logan
‘The Complete Spectrum ROM Disassembly’ by Dr lan
Logan & Dr Frank O’Hara
‘BASIC programming’ by Steven Vickers
(the handbook for the ZX Spectrum)
‘ZX Interface 1 & ZX Microdrive’
(the handbook for these products)

and a good supply of time.

104

INDEX

B

baud rate 7,63
BBC microcomputer .. 73
BORDER (new statement) 101
bordercolour 7, 42, 46, 65, 101
Broads! wien cccacrarasintearn nas 45

c
CAUBAS: 52.3.2 jengetonl ingiisentes

channels — Microdrive
— Network
— RS232....

CIRCLE (new statement)
CLEAR #

D
DATA ..

data file .

DRAW (new statement) ...

E
ERASE

errortrapping ..

F

FORMAT

H
HEADER ..

hook codes . a
— console input

console output .
RS232 input .
RS232 output ..

ZX printer output .

keyboard test ..

select drive
open file
close file .

delete file ..
read sequential

write record

Aigbeliesecste 9, 22, 34, 45, 63

ee 53-61
8, 77-91

105

read rand <
read sector
read next
write sector
create buffer .
delete buffer ‘
open network channel

close network channel
get packet

send packet

create system variables

i}

INKEY$# ... 26, 39, 49, 58

INPUT # ... +. 26,39, 49

insertion of shadow system

variables

LINE (new statement) . vere 9B
LOAD 16, 24, 37, 46, 58

Local Area Network see Network

M
Microdrive -- 21-42

— channel details
— technical details
— timing details

— cartridge ..
— CAT

— CLOSE #

— connector . 25
— ERASE . 14, 23, 35

— FORMAT .. 9, 22, 34

— hookcodes .. + 81-89
— INKEY$# .. -- 26,39

— INPUT # 26,39

— LOAD 24,37

— map (sector) . 34, 37,44

— MERGE . 16, 24, 37

— MOVE .. 15, 27,40

— namedfiles- 22,30

— OPEN# 12,26,32,38

— records .. 26, 40

— SAVE 23,36

— sectors 22, 30, 34, 39-42

— tape format ...

Network
— channel details

technical details
timing details

broadcast
CLOSE # ..

connector ..
FORMAT

HEADER

hook codes .
INKEYS$#

INPUT# ...

LOAD ...
MERGE .

NTSTAT .

OPEN # .

new statements ...
— BORDER ..

— CIRCLE .
— DRAW

— LINE ..

11-13, 38, 48, 65

eee ee 6,8
25, 40, 48

paging mechanism ..
PRINT #

program files

RS232 link

channel details
technical details
timing details

CLOSE #

hook codes
INKEYS# |.

INPUT #

106

— Tsystem ...
— VERIFY ...

RS423 (BBC microcomputer) 73

. 16, 36, 45, 64

SCOUT ...

SELF
shadow ROM .
Station
syntax/run-time modules

T
tape (Microdrive) ..

Tsystem ...

v

VECTOR
VERIFY ..

Zz

ZX Interface 1

ZX Printer

2-58
73

SPECTRUM MICRODRIVE BOOK
REGISTRATION CARD

Please fill out this page and return it promptly in order that we may keep
you informed of new software and special offers that arise. Simply cut
along the dotted line and return it to the correct address selected trom
those overleaf.

Where did you learn of this product?

(1 Magazine. If so, which one?000 000 ccc cece eee eens

(0 Through a friend.

C) Saw it in a Retail Store

[] Other. Please specify «0.2... ccc cere eee e sees

Which Magazines do you purchase?

Regularly ss cic ra snscwce ities 2ecenogieg si da ee apeaneenmuirommeee eames

OGEASBIONGI YS: ©... escce rcs tees bh mayer wired aw aa vhncaw eowdsioraicweaewoun

What age are you?

(J 10-15 16-19 20-24 CJ Over 25
We are continually writing new material and would appreciate receiving
your comments on our product.

How would you rate this book?

Excellent (] Value for money
Good (Priced right
Poor () Overpriced

Please tell us what software you would like to see produced for your
SPECTRUM.

Name

Address

Cade

'G
OZ

E
‘B

HO
}O

IA

‘
a
u
n
o
g
@
a
y

yI
No

S
ju
so
sa
ig

u
o
}
s
e
w
e
g

+
SI
NS

“P
l

‘A
ld

(e
Ne

sa
sn

y)

es
no
y

su
sn

og
ey

10
)

a
e
d

us
nj
e,

pu
ej
ea
z

MO
N

F BI
/e

sI
SN

y
Ul

M15 €2dH ‘euluspsoyeH ‘Buy

‘pe,
younyd

‘esnoy
awnogeyy

“pry
(sseusIignd)

esnoy
eusnog~eyy 70}

aBed
uunjas
W
o
p
b
u
l
y

p
a
y
u
n

ayy
uy]

“LLELE

NL
aillAuseN

‘eAUg
p
o
o
m
p
e
s
y

ZPE
“OU]

a
u
e
M
Y
O
S

e
s
n
o
H

e
u
N
O
g
i
e
y
y
 10]
abed
usnjas
B
D
J
a
W
Y

JO
S2}2}S
P
a
y
U
p

ay)
Ul]

[OL GN3S GNV SdOTSANA GadWV_LS V NI SIHL Nd

ISBN 086161 1276

Sinclair Research has added yet another
spectacular dimension to the capabilities
of the Spectrum micro — The Spectrum
microdrive.

In this book, Dr. lan Logan, the leading
authority on Sinclair computers, gives a
detailed explanation of this high speed
memory storage system.

How it works, its capacity for BASIC and
Machine Language, and the educational
and business possibilities are all
thoroughly detailed.

Many sample programs are included
to give a practical demonstration of the
unit's versatility.

Also included in this book is a full
discussion of the ZX Interface 1, which as
well as allowing the operation of the
Microdrives, enables Spectrum owners to
link with other Spectrum owners through
the networking facility, or to link with other
computers, printers, or data bases
through the RS232 interface.

One of the most exciting features of the
2X Interface 1 is the ability it gives the
experienced programmer to add new
commands to the Spectrum’s BASIC!
A full discussion of how to do this, with
detailed examples, concludes the book.

Anyone who wants to expand the
capabilities of the Spectrum micro beyond
its present limits must read this book.

Melbourne House Publishers

ISBN 0 861611276

Sinclair Research has added yet another
spectacular dimension to the capabilities
of the Spectrum micro — The Spectrum
microdrive.

In this book, Dr. lan Logan, the leading
authority on Sinclair computers, gives a
detailed explanation of this high speed
memory storage system.

How it works, its capacity for BASIC and
Machine Language, and the educational
and business possibilities are all
thoroughly detailed.

Many sample programs are included
to give a practical demonstration of the
unit's versatility.

Also included in this book is a full
discussion of the ZX Interface 1, which as
well as allowing the operation of the
Microdrives, enables Spectrum owners to
link with other Spectrum owners through
the networking facility, or to link with other
computers, printers, or data bases
through the RS232 interface.

One of the most exciting features of the
ZX Interface 1 is the ability it gives the
experienced programmer to add new
commands to the Spectrum’s BASIC!
A full discussion of how to do this, with
detailed examples, concludes the book.

Anyone who wants to expand the
capabilities of the Spectrum micro beyond
its present limits must read this book.

Melbourne House Publishers

ll ee
SPECTRUM
MICRO
DRIVE
BOOK
with details of the ZX Interface 1;
the Microdrive, the Local Area Network
and the RS232 Link

by Dr. lan Logan

y=

